268 research outputs found

    Universum Prescription: Regularization using Unlabeled Data

    Full text link
    This paper shows that simply prescribing "none of the above" labels to unlabeled data has a beneficial regularization effect to supervised learning. We call it universum prescription by the fact that the prescribed labels cannot be one of the supervised labels. In spite of its simplicity, universum prescription obtained competitive results in training deep convolutional networks for CIFAR-10, CIFAR-100, STL-10 and ImageNet datasets. A qualitative justification of these approaches using Rademacher complexity is presented. The effect of a regularization parameter -- probability of sampling from unlabeled data -- is also studied empirically.Comment: 7 pages for article, 3 pages for supplemental material. To appear in AAAI-1

    SVM with a neutral class

    Get PDF
    In many real binary classification problems, in addition to the presence of positive and negative classes, we are also given the examples of third neutral class, i.e., the examples with uncertain or intermediate state between positive and negative. Although it is a common practice to ignore the neutral class in a learning process, its appropriate use can lead to the improvement in classification accuracy. In this paper, to include neutral examples in a training stage, we adapt two variants of Tri-Class SVM (proposed by Angulo et al. in Neural Process Lett 23(1):89–101, 2006), the method designed to solve three-class problems with a use of single learning model. In analogy to classical SVM, we look for such a hyperplane, which maximizes the margin between positive and negative instances and which is localized as close to the neutral class as possible. In addition to original Angulo’s paper, we give a new interpretation of the model and show that it can be easily implemented in the primal. Our experiments demonstrate that considered methods obtain better results in binary classification problems than classical SVM and semi-supervised SVM

    Applicability of semi-supervised learning assumptions for gene ontology terms prediction

    Get PDF
    Gene Ontology (GO) is one of the most important resources in bioinformatics, aiming to provide a unified framework for the biological annotation of genes and proteins across all species. Predicting GO terms is an essential task for bioinformatics, but the number of available labelled proteins is in several cases insufficient for training reliable machine learning classifiers. Semi-supervised learning methods arise as a powerful solution that explodes the information contained in unlabelled data in order to improve the estimations of traditional supervised approaches. However, semi-supervised learning methods have to make strong assumptions about the nature of the training data and thus, the performance of the predictor is highly dependent on these assumptions. This paper presents an analysis of the applicability of semi-supervised learning assumptions over the specific task of GO terms prediction, focused on providing judgment elements that allow choosing the most suitable tools for specific GO terms. The results show that semi-supervised approaches significantly outperform the traditional supervised methods and that the highest performances are reached when applying the cluster assumption. Besides, it is experimentally demonstrated that cluster and manifold assumptions are complimentary to each other and an analysis of which GO terms can be more prone to be correctly predicted with each assumption, is provided.Postprint (published version

    Exploiting separability in large-scale linear support vector machine training

    Get PDF
    Linear support vector machine training can be represented as a large quadratic program. We present an efficient and numerically stable algorithm for this problem using interior point methods, which requires only O(n) operations per iteration. Through exploiting the separability of the Hessian, we provide a unified approach, from an optimization perspective, to 1-norm classification, 2-norm classification, universum classification, ordinal regression and ɛ-insensitive regression. Our approach has the added advantage of obtaining the hyperplane weights and bias directly from the solver. Numerical experiments indicate that, in contrast to existing methods, the algorithm is largely unaffected by noisy data, and they show training times for our implementation are consistent and highly competitive. We discuss the effect of using multiple correctors, and monitoring the angle of the normal to the hyperplane to determine termination

    Review on Machine Learning Algorithms for Weather Forecasting Issues

    Get PDF
    Machine leaning is a ground of recent research that officially focuses on the theory, performance, and properties of learning systems and algorithms. It is particularly cross disciplinary field building upon ideas from many different kinds of fields such as artificial intelligence, optimization theory, information theory, statistics, cognitive science, optimal control, and many other disciplines of science, engineering, and mathematics. Since implementation in a wide range of applications, machine learning has covered almost every scientific domain, which has brought great impact on the science and society. Machine learning techniques has been used on a variety of problems, including recommendation engines, recognition systems, informatics and data mining, and autonomous control systems. This research paper compared different machine algorithms for classification. Classification is used when the desired output is a discrete label

    Detection and prediction problems with applications in personalized health care

    Full text link
    The United States health-care system is considered to be unsustainable due to its unbearably high cost. Many of the resources are spent on acute conditions rather than aiming at preventing them. Preventive medicine methods, therefore, are viewed as a potential remedy since they can help reduce the occurrence of acute health episodes. The work in this dissertation tackles two distinct problems related to the prevention of acute disease. Specifically, we consider: (1) early detection of incorrect or abnormal postures of the human body and (2) the prediction of hospitalization due to heart related diseases. The solution to the former problem could be used to prevent people from unexpected injuries or alert caregivers in the event of a fall. The latter study could possibly help improve health outcomes and save considerable costs due to preventable hospitalizations. For body posture detection, we place wireless sensor nodes on different parts of the human body and use the pairwise measurements of signal strength corresponding to all sensor transmitter/receiver pairs to estimate body posture. We develop a composite hypothesis testing approach which uses a Generalized Likelihood Test (GLT) as the decision rule. The GLT distinguishes between a set of probability density function (pdf) families constructed using a custom pdf interpolation technique. The GLT is compared with the simple Likelihood Test and Multiple Support Vector Machines. The measurements from the wireless sensor nodes are highly variable and these methods have different degrees of adaptability to this variability. Besides, these methods also handle multiple observations differently. Our analysis and experimental results suggest that GLT is more accurate and suitable for the problem. For hospitalization prediction, our objective is to explore the possibility of effectively predicting heart-related hospitalizations based on the available medical history of the patients. We extensively explored the ways of extracting information from patients' Electronic Health Records (EHRs) and organizing the information in a uniform way across all patients. We applied various machine learning algorithms including Support Vector Machines, AdaBoost with Trees, and Logistic Regression adapted to the problem at hand. We also developed a new classifier based on a variant of the likelihood ratio test. The new classifier has a classification performance competitive with those more complex alternatives, but has the additional advantage of producing results that are more interpretable. Following this direction of increasing interpretability, which is important in the medical setting, we designed a new method that discovers hidden clusters and, at the same time, makes decisions. This new method introduces an alternating clustering and classification approach with guaranteed convergence and explicit performance bounds. Experimental results with actual EHRs from the Boston Medical Center demonstrate prediction rate of 82% under 30% false alarm rate, which could lead to considerable savings when used in practice
    • 

    corecore