641 research outputs found

    Building a generalized distributed system model

    Get PDF
    The key elements in the second year (1991-92) of our project are: (1) implementation of the distributed system prototype; (2) successful passing of the candidacy examination and a PhD proposal acceptance by the funded student; (3) design of storage efficient schemes for replicated distributed systems; and (4) modeling of gracefully degrading reliable computing systems. In the third year of the project (1992-93), we propose to: (1) complete the testing of the prototype; (2) enhance the functionality of the modules by enabling the experimentation with more complex protocols; (3) use the prototype to verify the theoretically predicted performance of locking protocols, etc.; and (4) work on issues related to real-time distributed systems. This should result in efficient protocols for these systems

    Rigorous Design of Fault-Tolerant Transactions for Replicated Database Systems using Event B

    No full text
    System availability is improved by the replication of data objects in a distributed database system. However, during updates, the complexity of keeping replicas identical arises due to failures of sites and race conditions among conflicting transactions. Fault tolerance and reliability are key issues to be addressed in the design and architecture of these systems. Event B is a formal technique which provides a framework for developing mathematical models of distributed systems by rigorous description of the problem, gradually introducing solutions in refinement steps, and verification of solutions by discharge of proof obligations. In this paper, we present a formal development of a distributed system using Event B that ensures atomic commitment of distributed transactions consisting of communicating transaction components at participating sites. This formal approach carries the development of the system from an initial abstract specification of transactional updates on a one copy database to a detailed design containing replicated databases in refinement. Through refinement we verify that the design of the replicated database confirms to the one copy database abstraction

    A novel causally consistent replication protocol with partial geo-replication

    Get PDF
    Distributed storage systems are a fundamental component of large-scale Internet services. To keep up with the increasing expectations of users regarding availability and latency, the design of data storage systems has evolved to achieve these properties, by exploiting techniques such as partial replication, geo-replication and weaker consistency models. While systems with these characteristics exist, they usually do not provide all these properties or do so in an inefficient manner, not taking full advantage of them. Additionally, weak consistency models, such as eventual consistency, put an excessively high burden on application programmers for writing correct applications, and hence, multiple systems have moved towards providing additional consistency guarantees such as implementing the causal (and causal+) consistency models. In this thesis we approach the existing challenges in designing a causally consistent replication protocol, with a focus on the use of geo and partial data replication. To this end, we present a novel replication protocol, capable of enriching an existing geo and partially replicated datastore with the causal+ consistency model. In addition, this thesis also presents a concrete implementation of the proposed protocol over the popular Cassandra datastore system. This implementation is complemented with experimental results obtained in a realistic scenario, in which we compare our proposal withmultiple configurations of the Cassandra datastore (without causal consistency guarantees) and with other existing alternatives. The results show that our proposed solution is able to achieve a balanced performance, with low data visibility delays and without significant performance penalties

    An Arbitrary 2D Structured Replica Control Protocol

    Get PDF
    Traditional replication protocols that logically arrange the replicas into a specific structure have reasonable availability, lower communication cost as well as system load than those that do not require any logical organisation of replicas. We propose in this paper the A2DS protocol: a single protocol that, unlike the existing proposed protocols, can be adapted to any 2D structure. Its read operation is carried out on any replica of every level of the structure whereas write operations are performed on all replicas of a single level of the structure. We present several basic 2D structures and introduce the new idea of obtaining other 2D structures by the composition of several basic ones. Two structures are proposed that have near optimal performance in terms of the communication cost, availability and system load of their read and write operations. Also, we introduce a new protocol that provides better performance for its write operations than those of ROWA protocol while preserving similar read performance

    Study of consensus protocols and improvement of the Federated Byzantine Agreement (FBA) algorithm

    Get PDF
    At a present time, it has been proven that blockchain technology has influenced to a great extent the way of human interaction in a digital world. The operation of the blockchain systems allows the peers to implement digital transactions in a Peer to Peer (P2P) network in a direct way without the need of third parties. Each blockchain determines different rules for the record of the transactions in the ledger. The transactions are inserted in blocks and each one, in turn, is appended to the chain (ledger) based on different consensus algorithms. Once blocks have been inserted in the chain, the consensus has been reached and the blocks with corresponding transactions are considered immutable. This thesis analyses the main features of the blockchain and how the consensus can be achieved through the different kinds of consensus algorithms. In addition, a detailed reference for Stellar and Federated Byzantine Agreement (FBA) consensus protocols is made in order to explain these algorithms, their limitations as well as their improvement. The development of a reputation mechanism is necessary to the improvement of above algorithms
    • …
    corecore