28 research outputs found

    Information reuse in dynamic spectrum access

    Get PDF
    Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE

    Versatility Of Low-Power Wide-Area Network Applications

    Get PDF
    Low-Power Wide-Area Network (LPWAN) is regarded as the leading communication technology for wide-area Internet-of-Things (IoT) applications. It offers low-power, long-range, and low-cost communication. With different communication requirements for varying IoT applications, many competing LPWAN technologies operating in both licensed (e.g., NB-IoT, LTE-M, and 5G) and unlicensed (e.g., LoRa and SigFox) bands have emerged. LPWANs are designed to support applications with low-power and low data rate operations. They are not well-designed to host applications that involve high mobility, high traffic, or real-time communication (e.g., volcano monitoring and control applications).With the increasing number of mobile devices in many IoT domains (e.g., agricultural IoT and smart city), mobility support is not well-addressed in LPWAN. Cellular-based/licensed LPWAN relies on the wired infrastructure to enable mobility. On the other hand, most unlicensed LPWANs operate on the crowded ISM band or are required to duty cycle, making handling mobility a challenge. In this dissertation, we first identify the key opportunities of LPWAN, highlight the challenges, and show potential directions for future research. We then enable the versatility of LPWAN applications first by enabling applications involving mobility over LPWAN. Specifically, we propose to handle mobility in LPWAN over white space considering Sensor Network Over White Space (SNOW). SNOW is a highly scalable and energy-efficient LPWAN operating over the TV white spaces. TV white spaces are the allocated but locally unused available TV channels (54 - 698 MHz in the US). We proposed a dynamic Carrier Frequency Offset (CFO) estimation and compensation technique that considers the impact of the Doppler shift due to mobility. Also, we design energy-efficient and fast BS discovery and association approaches. Finally, we demonstrate the feasibility of our approach through experiments in different deployments. Finally, we present a collision detection and recovery technique called RnR (Reverse & Replace Decoding) that applies to LPWANs. Additionally, we discuss future work to enable handling burst transmission over LPWAN and localization in mobile LPWAN

    On Random Sampling for Compliance Monitoring in Opportunistic Spectrum Access Networks

    Get PDF
    In the expanding spectrum marketplace, there has been a long term evolution towards more market€“oriented mechanisms, such as Opportunistic Spectrum Access (OSA), enabled through Cognitive Radio (CR) technology. However, the potential of CR technologies to revolutionize wireless communications, also introduces challenges based upon the potentially non€“deterministic CR behaviour in the Electrospace. While establishing and enforcing compliance to spectrum etiquette rules are essential to realization of successful OSA networks in the future, there has only been recent increased research activity into enforcement. This dissertation presents novel work on the spectrum monitoring aspect, which is crucial to effective enforcement of OSA. An overview of the challenges faced by current compliance monitoring methods is first presented. A framework is then proposed for the use of random spectral sampling techniques to reduce data collection complexity in wideband sensing scenarios. This approach is recommended as an alternative to Compressed Sensing (CS) techniques for wideband spectral occupancy estimation, which may be difficult to utilize in many practical congested scenarios where compliance monitoring is required. Next, a low€“cost computational approach to online randomized temporal sensing deployment is presented for characterization of temporal spectrum occupancy in cognitive radio scenarios. The random sensing approach is demonstrated and its performance is compared to CS€“based approach for occupancy estimation. A novel frame€“based sampling inversion technique is then presented for cases when it is necessary to track the temporal behaviour of individual CRs or CR networks. Parameters from randomly sampled Physical Layer Convergence Protocol (PLCP) data frames are used to reconstruct occupancy statistics, taking account of missed frames due to sampling design, sensor limitations and frame errors. Finally, investigations into the use of distributed and mobile spectrum sensing to collect spatial diversity to improve the above techniques are presented, for several common monitoring tasks in spectrum enforcement. Specifically, focus is upon techniques for achieving consensus in dynamic topologies such as in mobile sensing scenarios

    Wireless Sensor Data Transport, Aggregation and Security

    Get PDF
    abstract: Wireless sensor networks (WSN) and the communication and the security therein have been gaining further prominence in the tech-industry recently, with the emergence of the so called Internet of Things (IoT). The steps from acquiring data and making a reactive decision base on the acquired sensor measurements are complex and requires careful execution of several steps. In many of these steps there are still technological gaps to fill that are due to the fact that several primitives that are desirable in a sensor network environment are bolt on the networks as application layer functionalities, rather than built in them. For several important functionalities that are at the core of IoT architectures we have developed a solution that is analyzed and discussed in the following chapters. The chain of steps from the acquisition of sensor samples until these samples reach a control center or the cloud where the data analytics are performed, starts with the acquisition of the sensor measurements at the correct time and, importantly, synchronously among all sensors deployed. This synchronization has to be network wide, including both the wired core network as well as the wireless edge devices. This thesis studies a decentralized and lightweight solution to synchronize and schedule IoT devices over wireless and wired networks adaptively, with very simple local signaling. Furthermore, measurement results have to be transported and aggregated over the same interface, requiring clever coordination among all nodes, as network resources are shared, keeping scalability and fail-safe operation in mind. Furthermore ensuring the integrity of measurements is a complicated task. On the one hand Cryptography can shield the network from outside attackers and therefore is the first step to take, but due to the volume of sensors must rely on an automated key distribution mechanism. On the other hand cryptography does not protect against exposed keys or inside attackers. One however can exploit statistical properties to detect and identify nodes that send false information and exclude these attacker nodes from the network to avoid data manipulation. Furthermore, if data is supplied by a third party, one can apply automated trust metric for each individual data source to define which data to accept and consider for mentioned statistical tests in the first place. Monitoring the cyber and physical activities of an IoT infrastructure in concert is another topic that is investigated in this thesis.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Machine Learning Meets Communication Networks: Current Trends and Future Challenges

    Get PDF
    The growing network density and unprecedented increase in network traffic, caused by the massively expanding number of connected devices and online services, require intelligent network operations. Machine Learning (ML) has been applied in this regard in different types of networks and networking technologies to meet the requirements of future communicating devices and services. In this article, we provide a detailed account of current research on the application of ML in communication networks and shed light on future research challenges. Research on the application of ML in communication networks is described in: i) the three layers, i.e., physical, access, and network layers; and ii) novel computing and networking concepts such as Multi-access Edge Computing (MEC), Software Defined Networking (SDN), Network Functions Virtualization (NFV), and a brief overview of ML-based network security. Important future research challenges are identified and presented to help stir further research in key areas in this direction

    Design of software defined radio based testbed for smart healthcare

    Get PDF
    Human Activity Recognition (HAR) help to sense the environment of a human being with an objective to serve a diverse range of human-centric applications in health care, smart-homes and the military. The prevailing detection techniques use ambient sensors, cameras and wearable devices that primarily require strenuous deployment overheads and raise privacy concern as well. Monitoring human activities of daily living is a possible way of describing the functional and health status of a human. Therefore, human activity recognition (HAR) is one of genuine components in personalized life-care and healthcare systems, especially for the elderly and disabled. Recent advances in wireless technologies have demonstrated that a person’s activity can modulate the wireless signal, and enable the transfer of information from a human to an RF transceiver, even when the person does not carry a transmitter. The aim of this PhD project is to design a novel, non-invasive, easily deployable, flexible and scalable test-bed for detecting human daily activities that can help to assess the general physical health of a person based on Software Defined Radios (SDRs). The proposed system also allows us to modify the power level of transceiver model, change the operating frequency, use self-design antennas and change the number of subcarriers in real-time. The results obtained using USRP based wireless sensing for activities of daily living are highly accurate as compared to off-the-shelf wireless devices each time when activities and experiments are performed. This system leverage on the channel state information (CSI) to record the minute movement caused by breathing over orthogonal frequency division multiplexing (OFDM) in multiple sub-carriers. The proposed system combines subject count and activities performed in different classes together, resulting in simultaneous identification of occupancy count and activities performed. Different machine learning algorithms namely K-Nearest Neighbour, Decision Tree, Discriminant Analysis, and Naıve Bayes are used to evaluate the overall performance of the test-bed and achieved a high accuracy. The K-nearest neighbour outperformed all classifiers, providing an accuracy of 89.73% for activity detection and 91.01% for breathing monitoring. A deep learning convolutional neural network is engineered and trained on the CSI data to differentiate multi-subject activities. The proposed system can potentially fulfill the needs of future in-home health activity monitoring and is a viable alternative for monitoring public health and well being

    State-of-the-Art Sensors Technology in Spain 2015: Volume 1

    Get PDF
    This book provides a comprehensive overview of state-of-the-art sensors technology in specific leading areas. Industrial researchers, engineers and professionals can find information on the most advanced technologies and developments, together with data processing. Further research covers specific devices and technologies that capture and distribute data to be processed by applying dedicated techniques or procedures, which is where sensors play the most important role. The book provides insights and solutions for different problems covering a broad spectrum of possibilities, thanks to a set of applications and solutions based on sensory technologies. Topics include: • Signal analysis for spectral power • 3D precise measurements • Electromagnetic propagation • Drugs detection • e-health environments based on social sensor networks • Robots in wireless environments, navigation, teleoperation, object grasping, demining • Wireless sensor networks • Industrial IoT • Insights in smart cities • Voice recognition • FPGA interfaces • Flight mill device for measurements on insects • Optical systems: UV, LEDs, lasers, fiber optics • Machine vision • Power dissipation • Liquid level in fuel tanks • Parabolic solar tracker • Force sensors • Control for a twin roto

    20 Years of Evolution from Cognitive to Intelligent Communications

    Full text link
    It has been 20 years since the concept of cognitive radio (CR) was proposed, which is an efficient approach to provide more access opportunities to connect massive wireless devices. To improve the spectrum efficiency, CR enables unlicensed usage of licensed spectrum resources. It has been regarded as the key enabler for intelligent communications. In this article, we will provide an overview on the intelligent communication in the past two decades to illustrate the revolution of its capability from cognition to artificial intelligence (AI). Particularly, this article starts from a comprehensive review of typical spectrum sensing and sharing, followed by the recent achievements on the AI-enabled intelligent radio. Moreover, research challenges in the future intelligent communications will be discussed to show a path to the real deployment of intelligent radio. After witnessing the glorious developments of CR in the past 20 years, we try to provide readers a clear picture on how intelligent radio could be further developed to smartly utilize the limited spectrum resources as well as to optimally configure wireless devices in the future communication systems.Comment: The paper has been accepted by IEEE Transactions on Cognitive Communications and Networkin
    corecore