2,484 research outputs found

    Explore the Functional Connectivity between Brain Regions during a Chemistry Working Memory Task.

    Get PDF
    Previous studies have rarely examined how temporal dynamic patterns, event-related coherence, and phase-locking are related to each other. This study assessed reaction-time-sorted spectral perturbation and event-related spectral perturbation in order to examine the temporal dynamic patterns in the frontal midline (F), central parietal (CP), and occipital (O) regions during a chemistry working memory task at theta, alpha, and beta frequencies. Furthermore, the functional connectivity between F-CP, CP-O, and F-O were assessed by component event-related coherence (ERCoh) and component phase-locking (PL) at different frequency bands. In addition, this study examined whether the temporal dynamic patterns are consistent with the functional connectivity patterns across different frequencies and time courses. Component ERCoh/PL measured the interactions between different independent components decomposed from the scalp EEG, mixtures of time courses of activities arising from different brain, and artifactual sources. The results indicate that the O and CP regions' temporal dynamic patterns are similar to each other. Furthermore, pronounced component ERCoh/PL patterns were found to exist between the O and CP regions across each stimulus and probe presentation, in both theta and alpha frequencies. The consistent theta component ERCoh/PL between the F and O regions was found at the first stimulus and after probe presentation. These findings demonstrate that temporal dynamic patterns at different regions are in accordance with the functional connectivity patterns. Such coordinated and robust EEG temporal dynamics and component ERCoh/PL patterns suggest that these brain regions' neurons work together both to induce similar event-related spectral perturbation and to synchronize or desynchronize simultaneously in order to swiftly accomplish a particular goal. The possible mechanisms for such distinct component phase-locking and coherence patterns were also further discussed

    Cerebral Synchrony Assessment Tutorial: A General Review on Cerebral Signals' Synchronization Estimation Concepts and Methods

    Get PDF
    The human brain is ultimately responsible for all thoughts and movements that the body produces. This allows humans to successfully interact with their environment. If the brain is not functioning properly many abilities of human can be damaged. The goal of cerebral signal analysis is to learn about brain function. The idea that distinct areas of the brain are responsible for specific tasks, the functional segregation, is a key aspect of brain function. Functional integration is an important feature of brain function, it is the concordance of multiple segregated brain areas to produce a unified response. There is an amplified feedback mechanism in the brain called reentry which requires specific timing relations. This specific timing requires neurons within an assembly to synchronize their firing rates. This has led to increased interest and use of phase variables, particularly their synchronization, to measure connectivity in cerebral signals. Herein, we propose a comprehensive review on concepts and methods previously presented for assessing cerebral synchrony, with focus on phase synchronization, as a tool for brain connectivity evaluation

    Metastability, Criticality and Phase Transitions in brain and its Models

    Get PDF
    This essay extends the previously deposited paper "Oscillations, Metastability and Phase Transitions" to incorporate the theory of Self-organizing Criticality. The twin concepts of Scaling and Universality of the theory of nonequilibrium phase transitions is applied to the role of reentrant activity in neural circuits of cerebral cortex and subcortical neural structures
    • …
    corecore