289 research outputs found

    Accurate wearable heart rate monitoring during physical exercises using PPG

    Get PDF
    Objective: The challenging task of heart rate (HR) estimation from the photoplethysmographic (PPG) signal, during intensive physical exercises is tackled in this paper. Methods: The study presents a detailed analysis of a novel algorithm (WFPV) that exploits a Wiener filter to attenuate the motion artifacts, a phase vocoder to refine the HR estimate and user-adaptive postprocessing to track the subject physiology. Additionally, an offline version of the HR estimation algorithm that uses Viterbi decoding is designed for scenarios that do not require online HR monitoring (WFPV+VD). The performance of the HR estimation systems is rigorously compared with existing algorithms on the publically available database of 23 PPG recordings. Results: On the whole dataset of 23 PPG recordings, the algorithms result in average absolute errors of 1.97 and 1.37 BPM in the online and offline modes, respectively. On the test dataset of 10 PPG recordings which were most corrupted with motion artifacts, WFPV has an error of 2.95 BPM on its own and 2.32 BPM in an ensemble with 2 existing algorithms. Conclusion: The error rate is significantly reduced when compared with the state-of-the art PPG-based HR estimation methods. Significance: The proposed system is shown to be accurate in the presence of strong motion artifacts and in contrast to existing alternatives has very few free parameters to tune. The algorithm has a low computational cost and can be used for fitness tracking and health monitoring in wearable devices. The Matlab implementation of the algorithm is provided online

    Camera-Based Remote Photoplethysmography for Estimation of Heart Rate using Single Board Computers

    Get PDF
    The objective of this project was to develop a wireless, noncontact monitoring system that measures multiple physiological parameters in human faces from a distance using a camera. Compared to traditional sensors, this monitoring system does not use wires or adhesives, providing a safer, more user-friendly application. The goal of the monitoring systems was to estimate heart rate (HR). The current practices of measuring HR involve collecting electrocardiogram (ECG) signals from adhesive electrodes placed on various parts of the body and using a pulse oximeter (PO) typically placed on the ear lobe or finger. We were able to successfully create 2 monitoring systems and compare their results to the PO. Both monitoring systems are low-cost at less than $200. Neither system has been shown to exist in literature thus making them novel implementations. After analysis, we found the estimated HR from one of the systems to be not significantly different from the PO readings. In conclusion, we were able to estimate HR from a distance using a camera-based system which can have many useful applications, potentially in the Neonatal ICU and in other home health settings

    Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review.

    Get PDF
    Breathing rate (BR) is a key physiological parameter used in a range of clinical settings. Despite its diagnostic and prognostic value, it is still widely measured by counting breaths manually. A plethora of algorithms have been proposed to estimate BR from the electrocardiogram (ECG) and pulse oximetry (photoplethysmogram, PPG) signals. These BR algorithms provide opportunity for automated, electronic, and unobtrusive measurement of BR in both healthcare and fitness monitoring. This paper presents a review of the literature on BR estimation from the ECG and PPG. First, the structure of BR algorithms and the mathematical techniques used at each stage are described. Second, the experimental methodologies that have been used to assess the performance of BR algorithms are reviewed, and a methodological framework for the assessment of BR algorithms is presented. Third, we outline the most pressing directions for future research, including the steps required to use BR algorithms in wearable sensors, remote video monitoring, and clinical practice

    A multi-channel opto-electronic sensor to accurately monitor heart rate against motion artefact during exercise

    Get PDF
    This study presents the use of a multi-channel opto-electronic sensor (OEPS) to effectively monitor critical physiological parameters whilst preventing motion artefact as increasingly demanded by personal healthcare. The aim of this work was to study how to capture the heart rate (HR) efficiently through a well-constructed OEPS and a 3-axis accelerometer with wireless communication. A protocol was designed to incorporate sitting, standing, walking, running and cycling. The datasets collected from these activities were processed to elaborate sport physiological effects. t-test, Bland-Altman Agreement (BAA), and correlation to evaluate the performance of the OEPS were used against Polar and Mio-Alpha HR monitors. No differences in the HR were found between OEPS, and either Polar or Mio-Alpha (both p > 0.05); a strong correlation was found between Polar and OEPS (r: 0.96, p < 0.001); the bias of BAA 0.85 bpm, the standard deviation (SD) 9.20 bpm, and the limits of agreement (LOA) from −17.18 bpm to +18.88 bpm. For the Mio-Alpha and OEPS, a strong correlation was found (r: 0.96, p < 0.001); the bias of BAA 1.63 bpm, SD 8.62 bpm, LOA from −15.27 bpm to +18.58 bpm. These results demonstrate the OEPS to be capable of carrying out real time and remote monitoring of heart rate

    Signal processing techniques for cardiovascular monitoring applications using conventional and video-based photoplethysmography

    Get PDF
    Photoplethysmography (PPG)-based monitoring devices will probably play a decisive role in healthcare environment of the future, which will be preventive, predictive, personalized and participatory. Indeed, this optical technology presents several practical advantages over gold standard methods based on electrocardiography, because PPG wearable devices can be comfortably used for long-term continuous monitoring during daily life activities. Contactless video-based PPG technique, also known as imaging photoplethysmography (iPPG), has also attracted much attention recently. In that case, the cardiac pulse is remotely measured from the subtle skin color changes resulting from the blood circulation, using a simple video camera. PPG/iPPG have a lot of potential for a wide range of cardiovascular applications. Hence, there is a substantial need for signal processing techniques to explore these applications and to improve the reliability of the PPG/iPPG-based parameters. \par A part of the thesis is dedicated to the development of robust processing schemes to estimate heart rate from the PPG/iPPG signals. The proposed approaches were built on adaptive frequency tracking algorithms that were previously developed in our group. These tools, based on adaptive band-pass filters, provide instantaneous frequency estimates of the input signal(s) with a very low time delay, making them suitable for real-time applications. In case of conventional PPG, a prior adaptive noise cancellation step involving the use of accelerometer signals was also necessary to reconstruct clean PPG signals during the regions corrupted by motion artifacts. Regarding iPPG, after comparing different regions of interest on the subject face, we hypothesized that the simultaneous use of different iPPG signal derivation methods (i.e. methods to derive the iPPG time series from the pixel values of the consecutive frames) could be advantageous. Methods to assess signal quality online and to incorporate it into instantaneous frequency estimation were also examined and successfully applied to improve system reliability. \par This thesis also explored different innovative applications involving PPG/iPPG signals. The detection of atrial fibrillation was studied. Novel features derived directly from the PPG waveforms, designed to reflect the morphological changes observed during arrhythmic episodes, were proposed and proven to be successful for atrial fibrillation detection. Arrhythmia detection and robust heart rate estimation approaches were combined in another study aimed at reducing the number of false arrhythmia alarms in the intensive care unit by exploiting signals from independent sources, including PPG. Evaluation on a hidden dataset demonstrated that the number of false alarms was drastically reduced while almost no true alarm was suppressed. Finally, other aspects of the iPPG technology were examined, such as the measurement of pulse rate variability indexes from the iPPG signals and the estimation of respiratory rate from the iPPG interbeat intervals

    Estimation of respiratory rate from motion contaminated photoplethysmography signals incorporating accelerometry.

    Get PDF
    Estimation of respiratory rate (RR) from photoplethysmography (PPG) signals has important applications in the healthcare sector, from assisting doctors onwards to monitoring patients in their own homes. The problem is still very challenging, particularly during the motion for large segments of data, where results from different methods often do not agree. The authors aim to propose a new technique which performs motion reduction from PPG signals with the help of simultaneous acceleration signals where the PPG and accelerometer sensors need to be embedded in the same sensor unit. This method also reconstructs motion corrupted PPG signals in the Hilbert domain. An auto-regressive (AR) based technique has been used to estimate the RR from reconstructed PPGs. The proposed method has provided promising results for the estimation of RRs and their variations from PPG signals corrupted with motion artefact. The proposed platform is able to contribute to continuous in-hospital and home-based monitoring of patients using PPG signals under various conditions such as rest and motion states
    • …
    corecore