462 research outputs found

    Data-driven Threshold Selection for Direct Path Dominance Test

    Get PDF
    Direction-of-arrival estimation methods, when used with recordings made in enclosures are negatively affected by the reflections and reverberation in that enclosure. Direct path dominance (DPD) test was proposed as a pre-processing stage which can provide better DOA estimates by selecting only the time-frequency bins with a single dominant sound source component prior to DOA estimation, thereby reducing the total computational cost. DPD test involves selecting bins for which the ratio of the two largest singular values of the local spatial correlation matrix is above a threshold. The selection of this threshold is typically carried out in an ad hoc manner, which hinders the generalisation of this approach. This selection method also potentially increases the total computational cost or reduces the accuracy of DOA estimation. We propose a DPD test threshold selection method based on a data-driven statistical model. The model is based on the approximation of the singular value ratio distribution of the spatial correlation matrices as a generalised Pareto distribution and allows selecting time-frequency bins based on their probability of occurrence. We demonstrate the application of this threshold selection method via emulations using acoustic impulse responses measured in a highly reverberant room with a rigid spherical microphone array

    Acoustic localization of people in reverberant environments using deep learning techniques

    Get PDF
    La localización de las personas a partir de información acústica es cada vez más importante en aplicaciones del mundo real como la seguridad, la vigilancia y la interacción entre personas y robots. En muchos casos, es necesario localizar con precisión personas u objetos en función del sonido que generan, especialmente en entornos ruidosos y reverberantes en los que los métodos de localización tradicionales pueden fallar, o en escenarios en los que los métodos basados en análisis de vídeo no son factibles por no disponer de ese tipo de sensores o por la existencia de oclusiones relevantes. Por ejemplo, en seguridad y vigilancia, la capacidad de localizar con precisión una fuente de sonido puede ayudar a identificar posibles amenazas o intrusos. En entornos sanitarios, la localización acústica puede utilizarse para controlar los movimientos y actividades de los pacientes, especialmente los que tienen problemas de movilidad. En la interacción entre personas y robots, los robots equipados con capacidades de localización acústica pueden percibir y responder mejor a su entorno, lo que permite interacciones más naturales e intuitivas con los humanos. Por lo tanto, el desarrollo de sistemas de localización acústica precisos y robustos utilizando técnicas avanzadas como el aprendizaje profundo es de gran importancia práctica. Es por esto que en esta tesis doctoral se aborda dicho problema en tres líneas de investigación fundamentales: (i) El diseño de un sistema extremo a extremo (end-to-end) basado en redes neuronales capaz de mejorar las tasas de localización de sistemas ya existentes en el estado del arte. (ii) El diseño de un sistema capaz de localizar a uno o varios hablantes simultáneos en entornos con características y con geometrías de arrays de sensores diferentes sin necesidad de re-entrenar. (iii) El diseño de sistemas capaces de refinar los mapas de potencia acústica necesarios para localizar a las fuentes acústicas para conseguir una mejor localización posterior. A la hora de evaluar la consecución de dichos objetivos se han utilizado diversas bases de datos realistas con características diferentes, donde las personas involucradas en las escenas pueden actuar sin ningún tipo de restricción. Todos los sistemas propuestos han sido evaluados bajo las mismas condiciones consiguiendo superar en términos de error de localización a los sistemas actuales del estado del arte

    Acoustic Source Localisation in constrained environments

    Get PDF
    Acoustic Source Localisation (ASL) is a problem with real-world applications across multiple domains, from smart assistants to acoustic detection and tracking. And yet, despite the level of attention in recent years, a technique for rapid and robust ASL remains elusive – not least in the constrained environments in which such techniques are most likely to be deployed. In this work, we seek to address some of these current limitations by presenting improvements to the ASL method for three commonly encountered constraints: the number and configuration of sensors; the limited signal sampling potentially available; and the nature and volume of training data required to accurately estimate Direction of Arrival (DOA) when deploying a particular supervised machine learning technique. In regard to the number and configuration of sensors, we find that accuracy can be maintained at state-of-the-art levels, Steered Response Power (SRP), while reducing computation sixfold, based on direct optimisation of well known ASL formulations. Moreover, we find that the circular microphone configuration is the least desirable as it yields the highest localisation error. In regard to signal sampling, we demonstrate that the computer vision inspired algorithm presented in this work, which extracts selected keypoints from the signal spectrogram, and uses them to select signal samples, outperforms an audio fingerprinting baseline while maintaining a compression ratio of 40:1. In regard to the training data employed in machine learning ASL techniques, we show that the use of music training data yields an improvement of 19% against a noise data baseline while maintaining accuracy using only 25% of the training data, while training with speech as opposed to noise improves DOA estimation by an average of 17%, outperforming the Generalised Cross-Correlation technique by 125% in scenarios in which the test and training acoustic environments are matched.Heriot-Watt University James Watt Scholarship (JSW) in the School of Engineering & Physical Sciences

    A Geometric Deep Learning Approach to Sound Source Localization and Tracking

    Get PDF
    La localización y el tracking de fuentes sonoras mediante agrupaciones de micrófonos es un problema que, pese a llevar décadas siendo estudiado, permanece abierto. En los últimos años, modelos basados en deep learning han superado el estado del arte que había sido establecido por las técnicas clásicas de procesado de señal, pero estos modelos todavía presentan problemas para trabajar en espacios con alta reverberación o para realizar el tracking de varias fuentes sonoras, especialmente cuando no es posible aplicar ningún criterio para clasificarlas u ordenarlas. En esta tesis, se proponen nuevos modelos que, basados en las ideas del Geometric Deep Learning, suponen un avance en el estado del arte para las situaciones mencionadas previamente.Los modelos propuestos utilizan como entrada mapas de potencia acústica calculados con el algoritmo SRP-PHAT, una técnica clásica de procesado de señal que permite estimar la energía acústica recibida desde cualquier dirección del espacio. Además, también proponemos una nueva técnica para suprimir analíticamente el efecto de una fuente en las funciones de correlación cruzada usadas para calcular los mapas SRP-PHAT. Basándonos en técnicas de banda estrecha, se demuestra que es posible proyectar las funciones de correlación cruzada de las señales capturadas por una agrupación de micrófonos a un espacio ortogonal a una dirección dada simplemente usando una combinación lineal de las funciones originales con retardos temporales. La técnica propuesta puede usarse para diseñar sistemas iterativos de localización de múltiples fuentes que, tras localizar la fuente con mayor energía en las funciones de correlación cruzada o en los mapas SRP-PHAT, la cancelen para poder encontrar otras fuentes que estuvieran enmascaradas por ella.Antes de poder entrenar modelos de deep learning necesitamos datos. Esto, en el caso de seguir un esquema de aprendizaje supervisado, supone un dataset de grabaciones de audio multicanal con la posición de las fuentes etiquetada con precisión. Pese a que existen algunos datasets con estas características, estos no son lo suficientemente extensos para entrenar una red neuronal y los entornos acústicos que incluyen no son suficientemente variados. Para solventar el problema de la falta de datos, presentamos una técnica para simular escenas acústicas con una o varias fuentes en movimiento y, para realizar estas simulaciones conforme son necesarias durante el entrenamiento de la red, presentamos la que es, que sepamos, la primera librería de software libre para la simulación de acústica de salas con aceleración por GPU. Tal y como queda demostrado en esta tesis, esta librería es más de dos órdenes de magnitud más rápida que otras librerías del estado del arte.La idea principal del Geometric Deep Learning es que los modelos deberían compartir las simetrías (i.e. las invarianzas y equivarianzas) de los datos y el problema que se quiere resolver. Para la estimación de la dirección de llegada de una única fuente, el uso de mapas SRP-PHAT como entrada de nuestros modelos hace que la equivarianza a las rotaciones sea obvia y, tras presentar una primera aproximación usando redes convolucionales tridimensionales, presentamos un modelo basado en convoluciones icosaédricas que son capaces de aproximar la equivarianza al grupo continuo de rotaciones esféricas por la equivarianza al grupo discreto de las 60 simetrías del icosaedro. En la tesis se demuestra que los mapas SRP-PHAT son una característica de entrada mucho más robusta que los espectrogramas que se usan típicamente en muchos modelos del estado del arte y que el uso de las convoluciones icosaédricas, combinado con una nueva función softargmax que obtiene una salida de regresión a partir del resultado de una red convolucional interpretándolo como una distribución de probabilidad y calculando su valor esperado, permite reducir enormemente el número de parámetros entrenables de los modelos sin reducir la precisión de sus estimaciones.Cuando queremos realizar el tracking de varias fuentes en movimiento y no podemos aplicar ningún criterio para ordenarlas o clasificarlas, el problema se vuelve invariante a las permutaciones de las estimaciones, por lo que no podemos compararlas directamente con las etiquetas de referencia dado que no podemos esperar que sigan el mismo orden. Este tipo de modelos se han entrenado típicamente usando estrategias de entrenamiento invariantes a las permutaciones, pero estas normalmente no penalizan los cambios de identidad por lo que los modelos entrenados con ellas no mantienen la identidad de cada fuente de forma consistente. Para resolver este problema, en esta tesis proponemos una nueva estrategia de entrenamiento, a la que llamamos sliding permutation invariant training (sPIT), que es capaz de optimizar todas las características que podemos esperar de un sistema de tracking de múltiples fuentes: la precisión de sus estimaciones de dirección de llegada, la exactitud de sus detecciones y la consistencia de las identidades asignadas a cada fuente.Finalmente, proponemos un nuevo tipo de red recursiva que usa conjuntos de vectores en lugar de vectores para representar su entrada y su estado y que es invariante a las permutaciones de los elementos del conjunto de entrada y equivariante a las del conjunto de estado. En esta tesis se muestra como este es el comportamiento que deberíamos esperar de un sistema de tracking que toma como entradas las estimaciones de un modelo de localización multifuente y se compara el rendimiento de estas redes recursivas invariantes a las permutaciones con redes recursivas GRU convencionales para aplicaciones de tracking de fuentes sonoras.The localization and tracking of sound sources using microphone arrays is a problem that, even if it has attracted attention from the signal processing research community for decades, remains open. In recent years, deep learning models have surpassed the state-of-the-art that had been established by classic signal processing techniques, but these models still struggle with handling rooms with strong reverberations or tracking multiple sources that dynamically appear and disappear, especially when we cannot apply any criteria to classify or order them. In this thesis, we follow the ideas of the Geometric Deep Learning framework to propose new models and techniques that mean an advance of the state-of-the-art in the aforementioned scenarios. As the input of our models, we use acoustic power maps computed using the SRP-PHAT algorithm, a classic signal processing technique that allows us to estimate the acoustic energy received from any direction of the space and, therefore, compute arbitrary-shaped power maps. In addition, we also propose a new technique to analytically cancel a source from the generalized cross-correlations used to compute the SRP-PHAT maps. Based on previous narrowband cancellation techniques, we prove that we can project the cross-correlation functions of the signals captured by a microphone array into a space orthogonal to a given direction by just computing a linear combination of time-shifted versions of the original cross-correlations. The proposed cancellation technique can be used to design iterative multi-source localization systems where, after having found the strongest source in the generalized cross-correlation functions or in the SRP-PHAT maps, we can cancel it and find new sources that were previously masked by thefirst source. Before being able to train deep learning models we need data, which, in the case of following a supervised learning approach, means a dataset of multichannel recordings with the position of the sources accurately labeled. Although there exist some datasets like this, they are not large enough to train a neural network and the acoustic environments they include are not diverse enough. To overcome this lack of real data, we present a technique to simulate acoustic scenes with one or several moving sound sources and, to be able to perform these simulations as they are needed during the training, we present what is, to the best of our knowledge, the first free and open source room acoustics simulation library with GPU acceleration. As we prove in this thesis, the presented library is more than two orders of magnitude faster than other state-of-the-art CPU libraries. The main idea of the Geometric Deep Learning philosophy is that the models should fit the symmetries (i.e. the invariances and equivariances) of the data and the problem we want to solve. For single-source direction of arrival estimation, the use of SRP-PHAT maps as inputs of our models makes the rotational equivariance of the problem undeniably clear and, after a first approach using 3D convolutional neural networks, we present a model using icosahedral convolutions that approximate the equivariance to the continuous group of spherical rotations by the discrete group of the 60 icosahedral symmetries. We prove that the SRP-PHAT maps are a much more robust input feature than the spectrograms typically used in many state-of-the-art models and that the use of the icosahedral convolutions, combined with a new soft-argmax function that obtains a regression output from the output of the convolutional neural network by interpreting it as a probability distribution and computing its expected value, allows us to dramatically reduce the number of trainable parameters of the models without losing accuracy in their estimations. When we want to track multiple moving sources and we cannot use any criteria to order or classify them, the problem becomes invariant to the permutations of the estimates, so we cannot directly compare them with the ground truth labels since we cannot expect them to be in the same order. This kind of models has typically been trained using permutation invariant training strategies, but these strategies usually do not penalize the identity switches and the models trained with them do not keep the identity of every source consistent during the tracking. To solve this issue, we propose a new training strategy, which we call sliding permutation invariant training, that is able to optimize all the features that we could expect from a multi-source tracking system: the precision of the direction of arrival estimates, the accuracy of the source detections, and the consistency of the assigned identities. Finally, we propose a new kind of recursive neural network that, instead of using vectors as their input and their state, uses sets of vectors and is invariant to the permutation of the elements of the input set and equivariant to the permutations of the elements of the state set. We show how this is the behavior that we should expect from a tracking model which takes as inputs the estimates of a multi-source localization model and compare these permutation-invariant recursive neural networks with the conventional gated recurrent units for sound source tracking applications.<br /

    A compact noise covariance matrix model for MVDR beamforming

    Get PDF
    Acoustic beamforming is routinely used to improve the SNR of the received signal in applications such as hearing aids, robot audition, augmented reality, teleconferencing, source localisation and source tracking. The beamformer can be made adaptive by using an estimate of the time-varying noise covariance matrix in the spectral domain to determine an optimised beam pattern in each frequency bin that is specific to the acoustic environment and that can respond to temporal changes in it. However, robust estimation of the noise covariance matrix remains a challenging task especially in non-stationary acoustic environments. This paper presents a compact model of the signal covariance matrix that is defined by a small number of parameters whose values can be reliably estimated. The model leads to a robust estimate of the noise covariance matrix which can, in turn, be used to construct a beamformer. The performance of beamformers designed using this approach is evaluated for a spherical microphone array under a range of conditions using both simulated and measured room impulse responses. The proposed approach demonstrates consistent gains in intelligibility and perceptual quality metrics compared to the static and adaptive beamformers used as baselines

    Online Audio-Visual Multi-Source Tracking and Separation: A Labeled Random Finite Set Approach

    Get PDF
    The dissertation proposes an online solution for separating an unknown and time-varying number of moving sources using audio and visual data. The random finite set framework is used for the modeling and fusion of audio and visual data. This enables an online tracking algorithm to estimate the source positions and identities for each time point. With this information, a set of beamformers can be designed to separate each desired source and suppress the interfering sources
    corecore