338 research outputs found

    220904

    Get PDF
    This letter proposes a multi-gateway designation framework to design real-time wireless sensor networks (WSNs) improving traffic schedulability, i.e., meeting the traffic time constraints. To this end, we resort to Spectral Clustering un-supervised learning that allows defining arbitrary k disjoint clusters without knowledge of the nodes physical position. In each cluster we use a centrality metric from social sciences to designate one gateway. This novel combination is applied to a time-synchronized channel-hopping (TSCH) WSN under earliest-deadline-first (EDF) scheduling and shortest-path routing. Simulation results under varying configurations show that our framework is able to produce WSN designs that greatly reduce the worst-case network demand. In a situation with 5gateways, 99% schedulability can be achieved with 3.5 times more real-time flows than in a random benchmark.This work was co-financed by national funds through FCT/MCTES (Portuguese Foundation for Science and Technology) within the CISTER Research Unit (UIDB/04234/2020); by the Operational Programme for Competitiveness and Internationalization (COMPETE 2020) under the PT2020 Agreement, through the European Regional Development Fund (ERDF); and also by FCT and the ESF (European Social Fund) through the Regional Operational Programme (ROP) Norte 2020, under PhD grant 2020.06685.BD. The authors also thank to the CYTED AgIoT Project (520RT011), CORFO COTH2O “Consorcio de Gestion de Recursos Hídricos para la Macrozona Centro-Sur” and Proyecto Asociativo UDP “Plataformas Digitales como Modelo Organizacional”.info:eu-repo/semantics/publishedVersio

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network. Moreover, Minimum-sized Connected Dominating Set (MCDS) has become a well-known approach for constructing a Virtual Backbone (VB) to alleviate the broadcasting storm for efficient routing in WSNs extensively. However, no work considers the load-balance factor of CDSsin WSNs. In this dissertation, we first propose a new concept — the Load-Balanced CDS (LBCDS) and a new problem — the Load-Balanced Allocate Dominatee (LBAD) problem. Consequently, we propose a two-phase method to solve LBCDS and LBAD one by one and a one-phase Genetic Algorithm (GA) to solve the problems simultaneously. Secondly, since there is no performance ratio analysis in previously mentioned work, three problems are investigated and analyzed later. To be specific, the MinMax Degree Maximal Independent Set (MDMIS) problem, the Load-Balanced Virtual Backbone (LBVB) problem, and the MinMax Valid-Degree non Backbone node Allocation (MVBA) problem. Approximation algorithms and comprehensive theoretical analysis of the approximation factors are presented in the dissertation. On the other hand, in the current related literature, networks are deterministic where two nodes are assumed either connected or disconnected. In most real applications, however, there are many intermittently connected wireless links called lossy links, which only provide probabilistic connectivity. For WSNs with lossy links, we propose a Stochastic Network Model (SNM). Under this model, we measure the quality of CDSs using CDS reliability. In this dissertation, we construct an MCDS while its reliability is above a preset applicationspecified threshold, called Reliable MCDS (RMCDS). We propose a novel Genetic Algorithm (GA) with immigrant schemes called RMCDS-GA to solve the RMCDS problem. Finally, we apply the constructed LBCDS to a practical application under the realistic SNM model, namely data aggregation. To be specific, a new problem, Load-Balanced Data Aggregation Tree (LBDAT), is introduced finally. Our simulation results show that the proposed algorithms outperform the existing state-of-the-art approaches significantly

    VoxNet: An interactive, rapidly-deployable acoustic monitoring platform

    Get PDF

    IEEE 802.15.4e: a Survey

    Get PDF
    Several studies have highlighted that the IEEE 802.15.4 standard presents a number of limitations such as low reliability, unbounded packet delays and no protection against interference/fading, that prevent its adoption in applications with stringent requirements in terms of reliability and latency. Recently, the IEEE has released the 802.15.4e amendment that introduces a number of enhancements/modifications to the MAC layer of the original standard in order to overcome such limitations. In this paper we provide a clear and structured overview of all the new 802.15.4e mechanisms. After a general introduction to the 802.15.4e standard, we describe the details of the main 802.15.4e MAC behavior modes, namely Time Slotted Channel Hopping (TSCH), Deterministic and Synchronous Multi-channel Extension (DSME), and Low Latency Deterministic Network (LLDN). For each of them, we provide a detailed description and highlight the main features and possible application domains. Also, we survey the current literature and summarize open research issues

    Surveying Position Based Routing Protocols for Wireless Sensor and Ad-hoc Networks

    Get PDF
    A focus of the scientific community is to design network oriented position-based routing protocols and this has resulted in a very high number of algorithms, different in approach and performance and each suited only to particular applications. However, though numerous, very few position-based algorithms have actually been adopted for commercial purposes. This article is a survey of almost 50 position-based routing protocols and it comes as an aid in the implementation of this type of routing in various applications which may need to consider the advantages and pitfalls of position-based routing. An emphasis is made on geographic routing, whose notion is clarified as a more restrictive and more efficient type of position-based routing. The protocols are therefore divided into geographic and non-geographic routing protocols and each is characterized according to a number of network design issues and presented in a comparative manner from multiple points of view. The main requirements of current general applications are also studied and, depending on these, the survey proposes a number of protocols for use in particular application areas. This aims to help both researchers and potential users assess and choose the protocol best suited to their interest
    corecore