86,110 research outputs found

    A Benchmark for Image Retrieval using Distributed Systems over the Internet: BIRDS-I

    Full text link
    The performance of CBIR algorithms is usually measured on an isolated workstation. In a real-world environment the algorithms would only constitute a minor component among the many interacting components. The Internet dramati-cally changes many of the usual assumptions about measuring CBIR performance. Any CBIR benchmark should be designed from a networked systems standpoint. These benchmarks typically introduce communication overhead because the real systems they model are distributed applications. We present our implementation of a client/server benchmark called BIRDS-I to measure image retrieval performance over the Internet. It has been designed with the trend toward the use of small personalized wireless systems in mind. Web-based CBIR implies the use of heteroge-neous image sets, imposing certain constraints on how the images are organized and the type of performance metrics applicable. BIRDS-I only requires controlled human intervention for the compilation of the image collection and none for the generation of ground truth in the measurement of retrieval accuracy. Benchmark image collections need to be evolved incrementally toward the storage of millions of images and that scaleup can only be achieved through the use of computer-aided compilation. Finally, our scoring metric introduces a tightly optimized image-ranking window.Comment: 24 pages, To appear in the Proc. SPIE Internet Imaging Conference 200

    Effective pattern discovery for text mining

    Get PDF
    Many data mining techniques have been proposed for mining useful patterns in text documents. However, how to effectively use and update discovered patterns is still an open research issue, especially in the domain of text mining. Since most existing text mining methods adopted term-based approaches, they all suffer from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern (or phrase) based approaches should perform better than the term-based ones, but many experiments did not support this hypothesis. This paper presents an innovative technique, effective pattern discovery which includes the processes of pattern deploying and pattern evolving, to improve the effectiveness of using and updating discovered patterns for finding relevant and interesting information. Substantial experiments on RCV1 data collection and TREC topics demonstrate that the proposed solution achieves encouraging performance

    Structured Review of Code Clone Literature

    Get PDF
    This report presents the results of a structured review of code clone literature. The aim of the review is to assemble a conceptual model of clone-related concepts which helps us to reason about clones. This conceptual model unifies clone concepts from a wide range of literature, so that findings about clones can be compared with each other

    Evolving text classification rules with genetic programming

    Get PDF
    We describe a novel method for using genetic programming to create compact classification rules using combinations of N-grams (character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that the rules may have a number of other uses beyond classification and provide a basis for text mining applications

    Content-Based Book Recommending Using Learning for Text Categorization

    Full text link
    Recommender systems improve access to relevant products and information by making personalized suggestions based on previous examples of a user's likes and dislikes. Most existing recommender systems use social filtering methods that base recommendations on other users' preferences. By contrast, content-based methods use information about an item itself to make suggestions. This approach has the advantage of being able to recommended previously unrated items to users with unique interests and to provide explanations for its recommendations. We describe a content-based book recommending system that utilizes information extraction and a machine-learning algorithm for text categorization. Initial experimental results demonstrate that this approach can produce accurate recommendations.Comment: 8 pages, 3 figures, Submission to Fourth ACM Conference on Digital Librarie

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    Automatic document classification of biological literature

    Get PDF
    Background: Document classification is a wide-spread problem with many applications, from organizing search engine snippets to spam filtering. We previously described Textpresso, a text-mining system for biological literature, which marks up full text according to a shallow ontology that includes terms of biological interest. This project investigates document classification in the context of biological literature, making use of the Textpresso markup of a corpus of Caenorhabditis elegans literature. Results: We present a two-step text categorization algorithm to classify a corpus of C. elegans papers. Our classification method first uses a support vector machine-trained classifier, followed by a novel, phrase-based clustering algorithm. This clustering step autonomously creates cluster labels that are descriptive and understandable by humans. This clustering engine performed better on a standard test-set (Reuters 21578) compared to previously published results (F-value of 0.55 vs. 0.49), while producing cluster descriptions that appear more useful. A web interface allows researchers to quickly navigate through the hierarchy and look for documents that belong to a specific concept. Conclusions: We have demonstrated a simple method to classify biological documents that embodies an improvement over current methods. While the classification results are currently optimized for Caenorhabditis elegans papers by human-created rules, the classification engine can be adapted to different types of documents. We have demonstrated this by presenting a web interface that allows researchers to quickly navigate through the hierarchy and look for documents that belong to a specific concept
    • …
    corecore