2,858 research outputs found

    Solving multiple sequence alignment problems by using a swarm intelligent optimization based approach

    Get PDF
    In this article, the alignment of multiple sequences is examined through swarm intelligence based an improved particle swarm optimization (PSO). A random heuristic technique for solving discrete optimization problems and realistic estimation was recently discovered in PSO. The PSO approach is a nature-inspired technique based on intelligence and swarm movement. Thus, each solution is encoded as “chromosomes” in the genetic algorithm (GA). Based on the optimization of the objective function, the fitness function is designed to maximize the suitable components of the sequence and reduce the unsuitable components of the sequence. The availability of a public benchmark data set such as the Bali base is seen as an assessment of the proposed system performance, with the potential for PSO to reveal problems in adapting to better performance. This proposed system is compared with few existing approaches such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) alignment (DIALIGN), PILEUP8, hidden Markov model training (HMMT), rubber band technique-genetic algorithm (RBT-GA) and ML-PIMA. In many cases, the experimental results are well implemented in the proposed system compared to other existing approaches

    Efficient Two-Level Swarm Intelligence Approach for Multiple Sequence Alignment

    Get PDF
    This paper proposes two-level particle swarm optimization (TL-PSO), an efficient PSO variant that addresses two levels of optimization problem. Level one works on optimizing dimension for entire swarm, whereas level two works for optimizing each particle's position. The issue addressed here is one of the most challenging multiple sequence alignment (MSA) problem. TL-PSO deals with the arduous task of determination of exact sequence length with most suitable gap positions in MSA. The two levels considered here are: to obtain optimal sequence length in level one and to attain optimum gap positions for maximal alignment score in level two. The performance of TL-PSO has been assessed through a comparative study with two kinds of benchmark dataset of DNA and RNA. The efficiency of the proposed approach is evaluated with four popular scoring schemes at specific parameters. TL-PSO alignments are compared with four PSO variants, i.e. S-PSO, M-PSO, ED-MPSO and CPSO-Sk, and two leading alignment software, i.e. ClustalW and T-Coffee, at different alignment scores. Hence obtained results prove the competence of TL-PSO at accuracy aspects and conclude better score scheme

    New Trends in Artificial Intelligence: Applications of Particle Swarm Optimization in Biomedical Problems

    Get PDF
    Optimization is a process to discover the most effective element or solution from a set of all possible resources or solutions. Currently, there are various biological problems such as extending from biomolecule structure prediction to drug discovery that can be elevated by opting standard protocol for optimization. Particle swarm optimization (PSO) process, purposed by Dr. Eberhart and Dr. Kennedy in 1995, is solely based on population stochastic optimization technique. This method was designed by the researchers after inspired by social behavior of flocking bird or schooling fishes. This method shares numerous resemblances with the evolutionary computation procedures such as genetic algorithms (GA). Since, PSO algorithms is easy process to subject with minor adjustment of a few restrictions, it has gained more attention or advantages over other population based algorithms. Hence, PSO algorithms is widely used in various research fields like ranging from artificial neural network training to other areas where GA can be used in the system

    JPEG steganography with particle swarm optimization accelerated by AVX

    Get PDF
    Digital steganography aims at hiding secret messages in digital data transmitted over insecure channels. The JPEG format is prevalent in digital communication, and images are often used as cover objects in digital steganography. Optimization methods can improve the properties of images with embedded secret but introduce additional computational complexity to their processing. AVX instructions available in modern CPUs are, in this work, used to accelerate data parallel operations that are part of image steganography with advanced optimizations.Web of Science328art. no. e544
    corecore