1,781 research outputs found

    A survey on online active learning

    Full text link
    Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of minimizing the cost associated with collecting labeled observations has gained a lot of attention in recent years, particularly in real-world applications where data is only available in an unlabeled form. Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data. To overcome this issue, many active learning strategies have been proposed in the last decades, aiming to select the most informative observations for labeling in order to improve the performance of machine learning models. These approaches can be broadly divided into two categories: static pool-based and stream-based active learning. Pool-based active learning involves selecting a subset of observations from a closed pool of unlabeled data, and it has been the focus of many surveys and literature reviews. However, the growing availability of data streams has led to an increase in the number of approaches that focus on online active learning, which involves continuously selecting and labeling observations as they arrive in a stream. This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in the context of online active learning. We review the various techniques that have been proposed and discuss their strengths and limitations, as well as the challenges and opportunities that exist in this area of research. Our review aims to provide a comprehensive and up-to-date overview of the field and to highlight directions for future work

    Employee Churn Prediction using Logistic Regression and Support Vector Machine

    Get PDF
    It is a challenge for Human Resource (HR) team to retain their existing employees than to hire a new one. For any company, losing their valuable employees is a loss in terms of time, money, productivity, and trust, etc. This loss could be possibly minimized if HR could beforehand find out their potential employees who are planning to quit their job hence, we investigated solving the employee churn problem through the machine learning perspective. We have designed machine learning models using supervised and classification-based algorithms like Logistic Regression and Support Vector Machine (SVM). The models are trained with the IBM HR employee dataset retrieved from https://kaggle.com and later fine-tuned to boost the performance of the models. Metrics such as precision, recall, confusion matrix, AUC, ROC curve were used to compare the performance of the models. The Logistic Regression model recorded an accuracy of 0.67, Sensitivity of 0.65, Specificity of 0.70, Type I Error of 0.30, Type II Error of 0.35, and AUC score of 0.73 where as SVM achieved an accuracy of 0.93 with Sensitivity of 0.98, Specificity of 0.88, Type I Error of 0.12, Type II Error of 0.01 and AUC score of 0.96

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions

    Class-Imbalanced Learning on Graphs: A Survey

    Full text link
    The rapid advancement in data-driven research has increased the demand for effective graph data analysis. However, real-world data often exhibits class imbalance, leading to poor performance of machine learning models. To overcome this challenge, class-imbalanced learning on graphs (CILG) has emerged as a promising solution that combines the strengths of graph representation learning and class-imbalanced learning. In recent years, significant progress has been made in CILG. Anticipating that such a trend will continue, this survey aims to offer a comprehensive understanding of the current state-of-the-art in CILG and provide insights for future research directions. Concerning the former, we introduce the first taxonomy of existing work and its connection to existing imbalanced learning literature. Concerning the latter, we critically analyze recent work in CILG and discuss urgent lines of inquiry within the topic. Moreover, we provide a continuously maintained reading list of papers and code at https://github.com/yihongma/CILG-Papers.Comment: submitted to ACM Computing Survey (CSUR

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Real-to-Virtual Domain Unification for End-to-End Autonomous Driving

    Full text link
    In the spectrum of vision-based autonomous driving, vanilla end-to-end models are not interpretable and suboptimal in performance, while mediated perception models require additional intermediate representations such as segmentation masks or detection bounding boxes, whose annotation can be prohibitively expensive as we move to a larger scale. More critically, all prior works fail to deal with the notorious domain shift if we were to merge data collected from different sources, which greatly hinders the model generalization ability. In this work, we address the above limitations by taking advantage of virtual data collected from driving simulators, and present DU-drive, an unsupervised real-to-virtual domain unification framework for end-to-end autonomous driving. It first transforms real driving data to its less complex counterpart in the virtual domain and then predicts vehicle control commands from the generated virtual image. Our framework has three unique advantages: 1) it maps driving data collected from a variety of source distributions into a unified domain, effectively eliminating domain shift; 2) the learned virtual representation is simpler than the input real image and closer in form to the "minimum sufficient statistic" for the prediction task, which relieves the burden of the compression phase while optimizing the information bottleneck tradeoff and leads to superior prediction performance; 3) it takes advantage of annotated virtual data which is unlimited and free to obtain. Extensive experiments on two public driving datasets and two driving simulators demonstrate the performance superiority and interpretive capability of DU-drive
    • …
    corecore