4,115 research outputs found

    Multiple Quadrature Kalman Filtering

    Get PDF
    Bayesian filtering is a statistical approach that naturally appears in many signal processing problems. Ranging from Kalman filter to particle filters, there is a plethora of alternatives depending on model assumptions. With the exception of very few tractable cases, one has to resort to suboptimal methods due to the inability to analytically compute the Bayesian recursion in general dynamical systems. This is why it has attracted the attention of many researchers in order to develop efficient algorithms to implement it. We focus our interest into a recently developed algorithm known as the Quadrature Kalman filter (QKF). Under the Gaussian assumption, the QKF can tackle arbitrary nonlinearities by resorting to the Gauss-Hermite quadrature rules. However, its complexity increases exponentially with the state-space dimension. In this paper we study a complexity reduction technique for the QKF based on the partitioning of the state-space, referred to as the Multiple QKF. We prove that partitioning schemes can effectively be used to reduce the curse of dimensionality in the QKF. Simulation results are also provided to show that a nearly-optimal performance can be attained, while drastically reducing the computational complexity with respect to state-of-the-art algorithms that are able to deal with such nonlinear filtering problems

    On Approximate Nonlinear Gaussian Message Passing On Factor Graphs

    Full text link
    Factor graphs have recently gained increasing attention as a unified framework for representing and constructing algorithms for signal processing, estimation, and control. One capability that does not seem to be well explored within the factor graph tool kit is the ability to handle deterministic nonlinear transformations, such as those occurring in nonlinear filtering and smoothing problems, using tabulated message passing rules. In this contribution, we provide general forward (filtering) and backward (smoothing) approximate Gaussian message passing rules for deterministic nonlinear transformation nodes in arbitrary factor graphs fulfilling a Markov property, based on numerical quadrature procedures for the forward pass and a Rauch-Tung-Striebel-type approximation of the backward pass. These message passing rules can be employed for deriving many algorithms for solving nonlinear problems using factor graphs, as is illustrated by the proposition of a nonlinear modified Bryson-Frazier (MBF) smoother based on the presented message passing rules

    Uncertainty Exchange Through Multiple Quadrature Kalman Filtering

    Get PDF
    One of the major challenges in Bayesian filtering is the curse of dimensionality. The quadrature Kalman filter (QKF) is the method of choice in many real-life Gaussian problems, but its computational complexity increases exponentially with the dimension of the state. As a promising solution to overcome the filter limitations in such scenarios, we further explore the multiple state-partitioning approach, which considers the partition of the original space into several subspaces, with the goal to apply a low-dimensional filter at each partition. In this contribution, the key idea is to take advantage of the estimation uncertainty provided by the QKF to improve the interaction among filters and avoid the point estimate approximation performed in the original Multiple QKF (MQKF). The new filter formulation, named Improved MQKF, considers Gauss-Hermite quadrature rules to propagate the subspaces of interest, together with cubature rules for marginalization purposes. The nested quadrature-cubature approximation provides robustness and improves the filter performance. Simulation results for a multiple target tracking scenario are provided to support the discussion

    Optimal state estimation for cavity optomechanical systems

    Full text link
    We demonstrate optimal state estimation for a cavity optomechanical system through Kalman filtering. By taking into account nontrivial experimental noise sources, such as colored laser noise and spurious mechanical modes, we implement a realistic state-space model. This allows us to obtain the conditional system state, i.e., conditioned on previous measurements, with minimal least-square estimation error. We apply this method for estimating the mechanical state, as well as optomechanical correlations both in the weak and strong coupling regime. The application of the Kalman filter is an important next step for achieving real-time optimal (classical and quantum) control of cavity optomechanical systems.Comment: replaced with published version, 5+12 page

    Sequential Bayesian inference for static parameters in dynamic state space models

    Full text link
    A method for sequential Bayesian inference of the static parameters of a dynamic state space model is proposed. The method is based on the observation that many dynamic state space models have a relatively small number of static parameters (or hyper-parameters), so that in principle the posterior can be computed and stored on a discrete grid of practical size which can be tracked dynamically. Further to this, this approach is able to use any existing methodology which computes the filtering and prediction distributions of the state process. Kalman filter and its extensions to non-linear/non-Gaussian situations have been used in this paper. This is illustrated using several applications: linear Gaussian model, Binomial model, stochastic volatility model and the extremely non-linear univariate non-stationary growth model. Performance has been compared to both existing on-line method and off-line methods

    Estimating model evidence using data assimilation

    Get PDF
    We review the field of data assimilation (DA) from a Bayesian perspective and show that, in addition to its by now common application to state estimation, DA may be used for model selection. An important special case of the latter is the discrimination between a factual model–which corresponds, to the best of the modeller's knowledge, to the situation in the actual world in which a sequence of events has occurred–and a counterfactual model, in which a particular forcing or process might be absent or just quantitatively different from the actual world. Three different ensemble‐DA methods are reviewed for this purpose: the ensemble Kalman filter (EnKF), the ensemble four‐dimensional variational smoother (En‐4D‐Var), and the iterative ensemble Kalman smoother (IEnKS). An original contextual formulation of model evidence (CME) is introduced. It is shown how to apply these three methods to compute CME, using the approximated time‐dependent probability distribution functions (pdfs) each of them provide in the process of state estimation. The theoretical formulae so derived are applied to two simplified nonlinear and chaotic models: (i) the Lorenz three‐variable convection model (L63), and (ii) the Lorenz 40‐variable midlatitude atmospheric dynamics model (L95). The numerical results of these three DA‐based methods and those of an integration based on importance sampling are compared. It is found that better CME estimates are obtained by using DA, and the IEnKS method appears to be best among the DA methods. Differences among the performance of the three DA‐based methods are discussed as a function of model properties. Finally, the methodology is implemented for parameter estimation and for event attribution

    Deterministic Mean-field Ensemble Kalman Filtering

    Full text link
    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Legland etal. (2011) is extended to non-Gaussian state space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence Îș\kappa between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF when the dimension d<2Îșd<2\kappa. The fidelity of approximation of the true distribution is also established using an extension of total variation metric to random measures. This is limited by a Gaussian bias term arising from non-linearity/non-Gaussianity of the model, which exists for both DMFEnKF and standard EnKF. Numerical results support and extend the theory

    Data Assimilation by Conditioning on Future Observations

    Full text link
    Conventional recursive filtering approaches, designed for quantifying the state of an evolving uncertain dynamical system with intermittent observations, use a sequence of (i) an uncertainty propagation step followed by (ii) a step where the associated data is assimilated using Bayes' rule. In this paper we switch the order of the steps to: (i) one step ahead data assimilation followed by (ii) uncertainty propagation. This route leads to a class of filtering algorithms named \emph{smoothing filters}. For a system driven by random noise, our proposed methods require the probability distribution of the driving noise after the assimilation to be biased by a nonzero mean. The system noise, conditioned on future observations, in turn pushes forward the filtering solution in time closer to the true state and indeed helps to find a more accurate approximate solution for the state estimation problem
    • 

    corecore