47 research outputs found

    Dynamic Bayesian networks for symbolic polyphonic pitch modeling

    Get PDF
    National audienceThe performance of many MIR analysis algorithms, most importantly polyphonic pitch transcription, can be improved by introducing musicological knowledge to the estimation process. We have developed a probabilistically rigorous musicological model that takes into account dependencies between consequent musical notes and consequent chords, as well as the dependencies between chords, notes and the observed note saliences. We investigate its modeling potential by measuring and comparing the cross-entropy with symbolic (MIDI) data

    Automatic music transcription: challenges and future directions

    Get PDF
    Automatic music transcription is considered by many to be a key enabling technology in music signal processing. However, the performance of transcription systems is still significantly below that of a human expert, and accuracies reported in recent years seem to have reached a limit, although the field is still very active. In this paper we analyse limitations of current methods and identify promising directions for future research. Current transcription methods use general purpose models which are unable to capture the rich diversity found in music signals. One way to overcome the limited performance of transcription systems is to tailor algorithms to specific use-cases. Semi-automatic approaches are another way of achieving a more reliable transcription. Also, the wealth of musical scores and corresponding audio data now available are a rich potential source of training data, via forced alignment of audio to scores, but large scale utilisation of such data has yet to be attempted. Other promising approaches include the integration of information from multiple algorithms and different musical aspects

    Automatic chord transcription from audio using computational models of musical context

    Get PDF
    PhDThis thesis is concerned with the automatic transcription of chords from audio, with an emphasis on modern popular music. Musical context such as the key and the structural segmentation aid the interpretation of chords in human beings. In this thesis we propose computational models that integrate such musical context into the automatic chord estimation process. We present a novel dynamic Bayesian network (DBN) which integrates models of metric position, key, chord, bass note and two beat-synchronous audio features (bass and treble chroma) into a single high-level musical context model. We simultaneously infer the most probable sequence of metric positions, keys, chords and bass notes via Viterbi inference. Several experiments with real world data show that adding context parameters results in a significant increase in chord recognition accuracy and faithfulness of chord segmentation. The proposed, most complex method transcribes chords with a state-of-the-art accuracy of 73% on the song collection used for the 2009 MIREX Chord Detection tasks. This method is used as a baseline method for two further enhancements. Firstly, we aim to improve chord confusion behaviour by modifying the audio front end processing. We compare the effect of learning chord profiles as Gaussian mixtures to the effect of using chromagrams generated from an approximate pitch transcription method. We show that using chromagrams from approximate transcription results in the most substantial increase in accuracy. The best method achieves 79% accuracy and significantly outperforms the state of the art. Secondly, we propose a method by which chromagram information is shared between repeated structural segments (such as verses) in a song. This can be done fully automatically using a novel structural segmentation algorithm tailored to this task. We show that the technique leads to a significant increase in accuracy and readability. The segmentation algorithm itself also obtains state-of-the-art results. A method that combines both of the above enhancements reaches an accuracy of 81%, a statistically significant improvement over the best result (74%) in the 2009 MIREX Chord Detection tasks.Engineering and Physical Research Council U

    Modeling High-Dimensional Audio Sequences with Recurrent Neural Networks

    Get PDF
    Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.This thesis studies models of high-dimensional sequences based on recurrent neural networks (RNNs) and their application to music and speech. While in principle RNNs can represent the long-term dependencies and complex temporal dynamics present in real-world sequences such as video, audio and natural language, they have not been used to their full potential since their introduction by Rumelhart et al. (1986a) due to the difficulty to train them efficiently by gradient-based optimization. In recent years, the successful application of Hessian-free optimization and other advanced training techniques motivated an increase of their use in many state-of-the-art systems. The work of this thesis is part of this development. The main idea is to exploit the power of RNNs to learn a probabilistic description of sequences of symbols, i.e. high-level information associated with observed signals, that in turn can be used as a prior to improve the accuracy of information retrieval. For example, by modeling the evolution of note patterns in polyphonic music, chords in a harmonic progression, phones in a spoken utterance, or individual sources in an audio mixture, we can improve significantly the accuracy of polyphonic transcription, chord recognition, speech recognition and audio source separation respectively. The practical application of our models to these tasks is detailed in the last four articles presented in this thesis. In the first article, we replace the output layer of an RNN with conditional restricted Boltzmann machines to describe much richer multimodal output distributions. In the second article, we review and develop advanced techniques to train RNNs. In the last four articles, we explore various ways to combine our symbolic models with deep networks and non-negative matrix factorization algorithms, namely using products of experts, input/output architectures, and generative frameworks that generalize hidden Markov models. We also propose and analyze efficient inference procedures for those models, such as greedy chronological search, high-dimensional beam search, dynamic programming-like pruned beam search and gradient descent. Finally, we explore issues such as label bias, teacher forcing, temporal smoothing, regularization and pre-training

    A Hybrid Recurrent Neural Network For Music Transcription

    Get PDF
    We investigate the problem of incorporating higher-level symbolic score-like information into Automatic Music Transcription (AMT) systems to improve their performance. We use recurrent neural networks (RNNs) and their variants as music language models (MLMs) and present a generative architecture for combining these models with predictions from a frame level acoustic classifier. We also compare different neural network architectures for acoustic modeling. The proposed model computes a distribution over possible output sequences given the acoustic input signal and we present an algorithm for performing a global search for good candidate transcriptions. The performance of the proposed model is evaluated on piano music from the MAPS dataset and we observe that the proposed model consistently outperforms existing transcription methods

    Exploiting prior knowledge during automatic key and chord estimation from musical audio

    Get PDF
    Chords and keys are two ways of describing music. They are exemplary of a general class of symbolic notations that musicians use to exchange information about a music piece. This information can range from simple tempo indications such as “allegro” to precise instructions for a performer of the music. Concretely, both keys and chords are timed labels that describe the harmony during certain time intervals, where harmony refers to the way music notes sound together. Chords describe the local harmony, whereas keys offer a more global overview and consequently cover a sequence of multiple chords. Common to all music notations is that certain characteristics of the music are described while others are ignored. The adopted level of detail depends on the purpose of the intended information exchange. A simple description such as “menuet”, for example, only serves to roughly describe the character of a music piece. Sheet music on the other hand contains precise information about the pitch, discretised information pertaining to timing and limited information about the timbre. Its goal is to permit a performer to recreate the music piece. Even so, the information about timing and timbre still leaves some space for interpretation by the performer. The opposite of a symbolic notation is a music recording. It stores the music in a way that allows for a perfect reproduction. The disadvantage of a music recording is that it does not allow to manipulate a single aspect of a music piece in isolation, or at least not without degrading the quality of the reproduction. For instance, it is not possible to change the instrumentation in a music recording, even though this would only require the simple change of a few symbols in a symbolic notation. Despite the fundamental differences between a music recording and a symbolic notation, the two are of course intertwined. Trained musicians can listen to a music recording (or live music) and write down a symbolic notation of the played piece. This skill allows one, in theory, to create a symbolic notation for each recording in a music collection. In practice however, this would be too labour intensive for the large collections that are available these days through online stores or streaming services. Automating the notation process is therefore a necessity, and this is exactly the subject of this thesis. More specifically, this thesis deals with the extraction of keys and chords from a music recording. A database with keys and chords opens up applications that are not possible with a database of music recordings alone. On one hand, chords can be used on their own as a compact representation of a music piece, for example to learn how to play an accompaniment for singing. On the other hand, keys and chords can also be used indirectly to accomplish another goal, such as finding similar pieces. Because music theory has been studied for centuries, a great body of knowledge about keys and chords is available. It is known that consecutive keys and chords form sequences that are all but random. People happen to have certain expectations that must be fulfilled in order to experience music as pleasant. Keys and chords are also strongly intertwined, as a given key implies that certain chords will likely occur and a set of given chords implies an encompassing key in return. Consequently, a substantial part of this thesis is concerned with the question whether musicological knowledge can be embedded in a technical framework in such a way that it helps to improve the automatic recognition of keys and chords. The technical framework adopted in this thesis is built around a hidden Markov model (HMM). This facilitates an easy separation of the different aspects involved in the automatic recognition of keys and chords. Most experiments reviewed in the thesis focus on taking into account musicological knowledge about the musical context and about the expected chord duration. Technically speaking, this involves a manipulation of the transition probabilities in the HMMs. To account for the interaction between keys and chords, every HMM state is actually representing the combination of a key and a chord label. In the first part of the thesis, a number of alternatives for modelling the context are proposed. In particular, separate key change and chord change models are defined such that they closely mirror the way musicians conceive harmony. Multiple variants are considered that differ in the size of the context that is accounted for and in the knowledge source from which they were compiled. Some models are derived from a music corpus with key and chord notations whereas others follow directly from music theory. In the second part of the thesis, the contextual models are embedded in a system for automatic key and chord estimation. The features used in that system are so-called chroma profiles, which represent the saliences of the pitch classes in the audio signal. These chroma profiles are acoustically modelled by means of templates (idealised profiles) and a distance measure. In addition to these acoustic models and the contextual models developed in the first part, durational models are also required. The latter ensure that the chord and key estimations attain specified mean durations. The resulting system is then used to conduct experiments that provide more insight into how each system component contributes to the ultimate key and chord output quality. During the experimental study, the system complexity gets gradually increased, starting from a system containing only an acoustic model of the features that gets subsequently extended, first with duration models and afterwards with contextual models. The experiments show that taking into account the mean key and mean chord duration is essential to arrive at acceptable results for both key and chord estimation. The effect of using contextual information, however, is highly variable. On one hand, the chord change model has only a limited positive impact on the chord estimation accuracy (two to three percentage points), but this impact is fairly stable across different model variants. On the other hand, the chord change model has a much larger potential to improve the key output quality (up to seventeen percentage points), but only on the condition that the variant of the model is well adapted to the tested music material. Lastly, the key change model has only a negligible influence on the system performance. In the final part of this thesis, a couple of extensions to the formerly presented system are proposed and assessed. First, the global mean chord duration is replaced by key-chord specific values, which has a positive effect on the key estimation performance. Next, the HMM system is modified such that the prior chord duration distribution is no longer a geometric distribution but one that better approximates the observed durations in an appropriate data set. This modification leads to a small improvement of the chord estimation performance, but of course, it requires the availability of a suitable data set with chord notations from which to retrieve a target durational distribution. A final experiment demonstrates that increasing the scope of the contextual model only leads to statistically insignificant improvements. On top of that, the required computational load increases greatly
    corecore