5,806 research outputs found

    An Industrial Case Study on Test Cases as Requirements

    Full text link
    It is a conundrum that agile projects can succeed 'without requirements' when weak requirements engineering is a known cause for project failures. While Agile development projects often manage well without extensive requirements documentation, test cases are commonly used as requirements. We have investigated this agile practice at three companies in order to understand how test cases can fill the role of requirements. We performed a case study based on twelve interviews performed in a previous study. The findings include a range of benefits and challenges in using test cases for eliciting, validating, verifying, tracing and managing requirements. In addition, we identified three scenarios for applying the practice, namely as a mature practice, as a de facto practice and as part of an agile transition. The findings provide insights into how the role of requirements may be met in agile development including challenges to consider.Comment: Proceedings of XP 2015: 27-3

    Ground Systems Development Environment (GSDE) interface requirements analysis

    Get PDF
    A set of procedural and functional requirements are presented for the interface between software development environments and software integration and test systems used for space station ground systems software. The requirements focus on the need for centralized configuration management of software as it is transitioned from development to formal, target based testing. This concludes the GSDE Interface Requirements study. A summary is presented of findings concerning the interface itself, possible interface and prototyping directions for further study, and results of the investigation of the Cronus distributed applications environment

    Software Requirements As Executable Code

    Get PDF
    This project analyzed the effectiveness of using Story Testing frameworks to create an application directly from user specifications. It did this by taking an example business application with traditional specifications and rewriting those specifications in three different Story Testing Frameworks - Cucumber, FitNesse, and JBehave. Analysis of results drew the following conclusions: 1) Story Testing can help prove a project\u27s completeness, 2) Specifications are still too technical, 3) Implementation is not overly complex, and 4) Story Testing is worth it. It proposed future research around evaluating natural languages and seeking more user-friendly ways of writing specifications in a natural language

    Autonomics: In Search of a Foundation for Next Generation Autonomous Systems

    Full text link
    The potential benefits of autonomous systems have been driving intensive development of such systems, and of supporting tools and methodologies. However, there are still major issues to be dealt with before such development becomes commonplace engineering practice, with accepted and trustworthy deliverables. We argue that a solid, evolving, publicly available, community-controlled foundation for developing next generation autonomous systems is a must. We discuss what is needed for such a foundation, identify a central aspect thereof, namely, decision-making, and focus on three main challenges: (i) how to specify autonomous system behavior and the associated decisions in the face of unpredictability of future events and conditions and the inadequacy of current languages for describing these; (ii) how to carry out faithful simulation and analysis of system behavior with respect to rich environments that include humans, physical artifacts, and other systems,; and (iii) how to engineer systems that combine executable model-driven techniques and data-driven machine learning techniques. We argue that autonomics, i.e., the study of unique challenges presented by next generation autonomous systems, and research towards resolving them, can introduce substantial contributions and innovations in system engineering and computer science

    An Evaluation of Inter-Organizational Workflow Modelling Formalisms

    Get PDF
    This paper evaluates the dynamic aspects of the UML in the context of inter-organizational workflows. Two evaluation methodologies are used. The first one is ontological and is based on the BWW (Bunge-Wand-Weber) models. The second validation is based on prototyping and consists in the development of a workflow management system in the aerospace industry. Both convergent and divergent results are found from the two validations. Possible enhancements to the UML formalism are suggested from the convergent results. On the other hand, the divergent results suggest the need for a contextual specification in the BWW models. Ce travail consiste en une évaluation des aspects dynamiques du language UML dans un contexte de workflow inter-organisationnel. Le choix du language par rapport à d'autres est motivé par sa richesse grammaticale lui offrant une très bonne adaptation à ce contexte. L'évaluation se fait par une validation ontologique basée sur les modèles BWW (Bunge-Wand-Weber) et par la réalisation d'un prototype de système de gestion de workflows inter-organisationnels. À partir des résultats convergents obtenus des deux différentes analyses, des améliorations au formalisme UML sont suggérées. D'un autre coté, les analyses divergentes suggèrent une possibilité de spécifier les modèles BWW à des contextes plus particuliers tels que ceux des workflows et permettent également de suggérer d'autres améliorations possibles au langage.Ontology, Conceptual study, Prototype Validation, UML, IS development methods and tools., Ontologie, étude conceptuelle, validation du prototype, UML, méthodes et outils de développement IS

    Testing and test-driven development of conceptual schemas

    Get PDF
    The traditional focus for Information Systems (IS) quality assurance relies on the evaluation of its implementation. However, the quality of an IS can be largely determined in the first stages of its development. Several studies reveal that more than half the errors that occur during systems development are requirements errors. A requirements error is defined as a mismatch between requirements specification and stakeholders¿ needs and expectations. Conceptual modeling is an essential activity in requirements engineering aimed at developing the conceptual schema of an IS. The conceptual schema is the general knowledge that an IS needs to know in order to perform its functions. A conceptual schema specification has semantic quality when it is valid and complete. Validity means that the schema is correct (the knowledge it defines is true for the domain) and relevant (the knowledge it defines is necessary for the system). Completeness means that the conceptual schema includes all relevant knowledge. The validation of a conceptual schema pursues the detection of requirements errors in order to improve its semantic quality. Conceptual schema validation is still a critical challenge in requirements engineering. In this work we contribute to this challenge, taking into account that, since conceptual schemas of IS can be specified in executable artifacts, they can be tested. In this context, the main contributions of this Thesis are (1) an approach to test conceptual schemas of information systems, and (2) a novel method for the incremental development of conceptual schemas supported by continuous test-driven validation. As far as we know, this is the first work that proposes and implements an environment for automated testing of UML/OCL conceptual schemas, and the first work that explores the use of test-driven approaches in conceptual modeling. The testing of conceptual schemas may be an important and practical means for their validation. It allows checking correctness and completeness according to stakeholders¿ needs and expectations. Moreover, in conjunction with the automatic check of basic test adequacy criteria, we can also analyze the relevance of the elements defined in the schema. The testing environment we propose requires a specialized language for writing tests of conceptual schemas. We defined the Conceptual Schema Testing Language (CSTL), which may be used to specify automated tests of executable schemas specified in UML/OCL. We also describe a prototype implementation of a test processor that makes feasible the approach in practice. The conceptual schema testing approach supports test-last validation of conceptual schemas, but it also makes sense to test incomplete conceptual schemas while they are developed. This fact lays the groundwork of Test-Driven Conceptual Modeling (TDCM), which is our second main contribution. TDCM is a novel conceptual modeling method based on the main principles of Test-Driven Development (TDD), an extreme programming method in which a software system is developed in short iterations driven by tests. We have applied the method in several case studies, in the context of Design Research, which is the general research framework we adopted. Finally, we also describe an integration approach of TDCM into a broad set of software development methodologies, including the Unified Process development methodology, MDD-based approaches, storytest-driven agile methods and goal and scenario-oriented requirements engineering methods.Els enfocaments per assegurar la qualitat deis sistemes d'informació s'han basal tradicional m en! en l'avaluació de la seva implementació. No obstan! aix6, la qualitat d'un sis tema d'informació pot ser ampliament determinada en les primeres fases del seu desenvolupament. Diversos estudis indiquen que més de la meitat deis errors de software són errors de requisits . Un error de requisit es defineix com una desalineació entre l'especificació deis requisits i les necessitats i expectatives de les parts im plicades (stakeholders ). La modelització conceptual és una activitat essencial en l'enginyeria de requisits , l'objectiu de la qual és desenvolupar !'esquema conceptual d'un sistema d'informació. L'esquema conceptual és el coneixement general que un sistema d'informació requereix per tal de desenvolupar les seves funcions . Un esquema conceptual té qualitat semantica quan és va lid i complet. La valides a implica que !'esquema sigui correcte (el coneixement definit és cert peral domini) i rellevant (el coneixement definit és necessari peral sistema). La completes a significa que !'esquema conceptual inclou tot el coneixement rellevant. La validació de !'esquema conceptual té coma objectiu la detecció d'errors de requisits per tal de millorar la qualitat semantica. La validació d'esquemes conceptuals és un repte crític en l'enginyeria de requisits . Aquesta te si contribueix a aquest repte i es basa en el fet que els es quemes conceptuals de sistemes d'informació poden ser especificats en artefactes executables i, per tant, poden ser provats. Les principals contribucions de la te si són (1) un enfocament pera les pro ves d'esquemes conceptuals de sistemes d'informació, i (2) una metodología innovadora pel desenvolupament incremental d'esquemes conceptuals assistit per una validació continuada basada en proves . Les pro ves d'esquemes conceptuals poden ser una im portant i practica técnica pera la se va validació, jaque permeten provar la correctesa i la completesa d'acord ambles necessitats i expectatives de les parts interessades. En conjunció amb la comprovació d'un conjunt basic de criteris d'adequació de les proves, també podem analitzar la rellevancia deis elements definits a !'esquema. L'entorn de test proposat inclou un llenguatge especialitzat per escriure proves automatitzades d'esquemes conceptuals, anomenat Conceptual Schema Testing Language (CSTL). També hem descrit i implementa! a un prototip de processador de tes tos que fa possible l'aplicació de l'enfocament proposat a la practica. D'acord amb l'estat de l'art en validació d'esquemes conceptuals , aquest és el primer treball que proposa i implementa un entorn pel testing automatitzat d'esquemes conceptuals definits en UML!OCL. L'enfocament de proves d'esquemes conceptuals permet dura terme la validació d'esquemes existents , pero també té sentit provar es quemes conceptuals incomplets m entre estant sent desenvolupats. Aquest fet és la base de la metodología Test-Driven Conceptual Modeling (TDCM), que és la segona contribució principal. El TDCM és una metodología de modelització conceptual basada en principis basics del Test-Driven Development (TDD), un métode de programació en el qual un sistema software és desenvolupat en petites iteracions guiades per proves. També hem aplicat el métode en diversos casos d'estudi en el context de la metodología de recerca Design Science Research. Finalment, hem proposat enfocaments d'integració del TDCM en diverses metodologies de desenvolupament de software

    A Taxonomy for Requirements Engineering and Software Test Alignment

    Full text link
    Requirements Engineering and Software Testing are mature areas and have seen a lot of research. Nevertheless, their interactions have been sparsely explored beyond the concept of traceability. To fill this gap, we propose a definition of requirements engineering and software test (REST) alignment, a taxonomy that characterizes the methods linking the respective areas, and a process to assess alignment. The taxonomy can support researchers to identify new opportunities for investigation, as well as practitioners to compare alignment methods and evaluate alignment, or lack thereof. We constructed the REST taxonomy by analyzing alignment methods published in literature, iteratively validating the emerging dimensions. The resulting concept of an information dyad characterizes the exchange of information required for any alignment to take place. We demonstrate use of the taxonomy by applying it on five in-depth cases and illustrate angles of analysis on a set of thirteen alignment methods. In addition, we developed an assessment framework (REST-bench), applied it in an industrial assessment, and showed that it, with a low effort, can identify opportunities to improve REST alignment. Although we expect that the taxonomy can be further refined, we believe that the information dyad is a valid and useful construct to understand alignment

    Integrated Modeling of Process- and Data-Centric Software Systems with PHILharmonicFlows

    Get PDF
    Process- and data-centric software systems require a tight integration of processes, functions, data, and users. Thereby, the behavioral perspective is described by process models, while the information perspective is captured in a data model. Eliciting and capturing requirements of such software systems in a consistent way is a challenging task, demanding that both process and data model are well aligned and consistent with each other. While traditional software modeling languages do not allow for an explicit integration of data and process models, activity-centric process modeling languages tend to neglect the role of data as a driver of process execution; i.e., business objects are usually outside the control of the process, normally stored in external databases. To overcome this drawback, PHILharmonicFlows provides a comprehensive framework for enabling object-aware process support. In addition, a sound specification of process- and object-centric software systems becomes possible. In this paper, we present a requirements modeling approach that provides methodological guidance for modeling large process- and data-centric software systems based on PHILharmonicFlows. Such guidance will foster the introduction of respective software systems in the large scale

    A study of System Interface Sets (SIS) for the host, target and integration environments of the Space Station Program (SSP)

    Get PDF
    System interface sets (SIS) for large, complex, non-stop, distributed systems are examined. The SIS of the Space Station Program (SSP) was selected as the focus of this study because an appropriate virtual interface specification of the SIS is believed to have the most potential to free the project from four life cycle tyrannies which are rooted in a dependance on either a proprietary or particular instance of: operating systems, data management systems, communications systems, and instruction set architectures. The static perspective of the common Ada programming support environment interface set (CAIS) and the portable common execution environment (PCEE) activities are discussed. Also, the dynamic perspective of the PCEE is addressed

    Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond

    Full text link
    We present a graphical and dynamic framework for binding and execution of business) process models. It is tailored to integrate 1) ad hoc processes modeled graphically, 2) third party services discovered in the (Inter)net, and 3) (dynamically) synthesized process chains that solve situation-specific tasks, with the synthesis taking place not only at design time, but also at runtime. Key to our approach is the introduction of type-safe stacked second-order execution contexts that allow for higher-order process modeling. Tamed by our underlying strict service-oriented notion of abstraction, this approach is tailored also to be used by application experts with little technical knowledge: users can select, modify, construct and then pass (component) processes during process execution as if they were data. We illustrate the impact and essence of our framework along a concrete, realistic (business) process modeling scenario: the development of Springer's browser-based Online Conference Service (OCS). The most advanced feature of our new framework allows one to combine online synthesis with the integration of the synthesized process into the running application. This ability leads to a particularly flexible way of implementing self-adaption, and to a particularly concise and powerful way of achieving variability not only at design time, but also at runtime.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455
    corecore