108 research outputs found

    VLSI Routing for Advanced Technology

    Get PDF
    Routing is a major step in VLSI design, the design process of complex integrated circuits (commonly known as chips). The basic task in routing is to connect predetermined locations on a chip (pins) with wires which serve as electrical connections. One main challenge in routing for advanced chip technology is the increasing complexity of design rules which reflect manufacturing requirements. In this thesis we investigate various aspects of this challenge. First, we consider polygon decomposition problems in the context of VLSI design rules. We introduce different width notions for polygons which are important for width-dependent design rules in VLSI routing, and we present efficient algorithms for computing width-preserving decompositions of rectilinear polygons into rectangles. Such decompositions are used in routing to allow for fast design rule checking. A main contribution of this thesis is an O(n) time algorithm for computing a decomposition of a simple rectilinear polygon with n vertices into O(n) rectangles, preseverving two-dimensional width. Here the two-dimensional width at a point of the polygon is defined as the edge length of a largest square that contains the point and is contained in the polygon. In order to obtain these results we establish a connection between such decompositions and Voronoi diagrams. Furthermore, we consider implications of multiple patterning and other advanced design rules for VLSI routing. The main contribution in this context is the detailed description of a routing approach which is able to manage such advanced design rules. As a main algorithmic concept we use multi-label shortest paths where certain path properties (which model design rules) can be enforced by defining labels assigned to path vertices and allowing only certain label transitions. The described approach has been implemented in BonnRoute, a VLSI routing tool developed at the Research Institute for Discrete Mathematics, University of Bonn, in cooperation with IBM. We present experimental results confirming that a flow combining BonnRoute and an external cleanup step produces far superior results compared to an industry standard router. In particular, our proposed flow runs more than twice as fast, reduces the via count by more than 20%, the wiring length by more than 10%, and the number of remaining design rule errors by more than 60%. These results obtained by applying our multiple patterning approach to real-world chip instances provided by IBM are another main contribution of this thesis. We note that IBM uses our proposed combined BonnRoute flow as the default tool for signal routing

    Design and fabrication of a multipurpose compliant nanopositioning architecture

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 227-241).This research focused on generating the knowledge required to design and fabricate a high-speed application flexible, low average cost multipurpose compliant nanopositioner architecture with high performance integrated sensing. Customized nanopositioner designs can be created in ~~1 week, for 30x increase in sensing dynamic range over comparable state-of-the-art compliant nanopositioners. These improvements will remove one of the main hurdles to practical non-IC nanomanufacturing, which could enable advances in a range of fields including personalized medication, computing and data storage, and energy generation/storage through the manufacture of metamaterials. Advances were made in two avenues: flexibility and affordability. The fundamental advance in flexibility is the use of a new approach to modeling the nanopositioner and sensors as combined mechanical/electronic systems. This enabled the discovery of the operational regimes and design rules needed to maximize performance, making it possible to rapidly redesign nanopositioner architecture for varying functional requirements such as range, resolution and force. The fundamental advance to increase affordability is the invention of Non-Lithographically-Based Microfabrication (NLBM), a hybrid macro-/micro-fabrication process chain that can produce MEMS with integrated sensing in a flexible manner, at small volumes and with low per-device costs. This will allow for low-cost customizable nanopositioning architectures with integrated position sensing to be created for a range of micro-/nano- manufacturing and metrology applications. A Hexflex 6DOF nanopositioner with titanium flexures and integrated siliconpiezoresistive sensing was fabricated using NLBM. This device was designed with a metal mechanical structure in order to improve its robustness for general handling and operation. Single crystalline silicon piezoresistors were patterned from bulk silicon wafers and transferred to the mechanical structure via thin-film patterning and transfer. This work demonstrates that it is now feasible to design and create a customized positioner for each nanomanufacturing/metrology application. The Hexflex architecture can be significantly varied to adjust range, resolution, force scale, stiffness, and DOF all as needed. The NLBM process was shown to enable alignment of device components on the scale of 10's of microns. 150μm piezoresistor arm widths were demonstrated, with suggestions made for how to reach the expected lower bound of 25[mu]m. Flexures of 150[mu]m and 600[mu]m were demonstrated on 4 the mechanical structure, with a lower bound of ~~50[mu]m expected for the process. Electrical traces of 800[mu]m width were used to ensure low resistance, with a lower bound of ~~100[mu]m expected for the process. The integrated piezoresistive sensing was designed to have a gage factor of about 125, but was reduced to about 70 due to lower substrate temperatures during soldering, as predicted by design theory. The sensors were measured to have a full noise dynamic range of about 59dB over a 10kHz sensor bandwidth, limited by the Schottky barrier noise. Several simple methods are suggested for boosting the performance to ~~135dB over a 10kHz sensor bandwidth, about a <1Å resolution over the 200[mu]m range of the case study device. This sensor performance is generally in excess of presently available kHz-bandwidth analog-to-digital converters.by Robert M. Panas.Ph.D

    Choreographing the extended agent : performance graphics for dance theater

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (v. 2, leaves 448-458).The marriage of dance and interactive image has been a persistent dream over the past decades, but reality has fallen far short of potential for both technical and conceptual reasons. This thesis proposes a new approach to the problem and lays out the theoretical, technical and aesthetic framework for the innovative art form of digitally augmented human movement. I will use as example works a series of installations, digital projections and compositions each of which contains a choreographic component - either through collaboration with a choreographer directly or by the creation of artworks that automatically organize and understand purely virtual movement. These works lead up to two unprecedented collaborations with two of the greatest choreographers working today; new pieces that combine dance and interactive projected light using real-time motion capture live on stage. The existing field of"dance technology" is one with many problems. This is a domain with many practitioners, few techniques and almost no theory; a field that is generating "experimental" productions with every passing week, has literally hundreds of citable pieces and no canonical works; a field that is oddly disconnected from modern dance's history, pulled between the practical realities of the body and those of computer art, and has no influence on the prevailing digital art paradigms that it consumes.(cont.) This thesis will seek to address each of these problems: by providing techniques and a basis for "practical theory"; by building artworks with resources and people that have never previously been brought together, in theaters and in front of audiences previously inaccessible to the field; and by proving through demonstration that a profitable and important dialogue between digital art and the pioneers of modern dance can in fact occur. The methodological perspective of this thesis is that of biologically inspired, agent-based artificial intelligence, taken to a high degree of technical depth. The representations, algorithms and techniques behind such agent architectures are extended and pushed into new territory for both interactive art and artificial intelligence. In particular, this thesis ill focus on the control structures and the rendering of the extended agents' bodies, the tools for creating complex agent-based artworks in intense collaborative situations, and the creation of agent structures that can span live image and interactive sound production. Each of these parts becomes an element of what it means to "choreograph" an extended agent for live performance.Marc Downie.Ph.D

    Scalable Tools for Information Extraction and Causal Modeling of Neural Data

    Get PDF
    Systems neuroscience has entered in the past 20 years into an era that one might call "large scale systems neuroscience". From tuning curves and single neuron recordings there has been a conceptual shift towards a more holistic understanding of how the neural circuits work and as a result how their representations produce neural tunings. With the introduction of a plethora of datasets in various scales, modalities, animals, and systems; we as a community have witnessed invaluable insights that can be gained from the collective view of a neural circuit which was not possible with small scale experimentation. The concurrency of the advances in neural recordings such as the production of wide field imaging technologies and neuropixels with the developments in statistical machine learning and specifically deep learning has brought system neuroscience one step closer to data science. With this abundance of data, the need for developing computational models has become crucial. We need to make sense of the data, and thus we need to build models that are constrained up to the acceptable amount of biological detail and probe those models in search of neural mechanisms. This thesis consists of sections covering a wide range of ideas from computer vision, statistics, machine learning, and dynamical systems. But all of these ideas share a common purpose, which is to help automate neuroscientific experimentation process in different levels. In chapters 1, 2, and 3, I develop tools that automate the process of extracting useful information from raw neuroscience data in the model organism C. elegans. The goal of this is to avoid manual labor and pave the way for high throughput data collection aiming at better quantification of variability across the population of worms. Due to its high level of structural and functional stereotypy, and its relative simplicity, the nematode C. elegans has been an attractive model organism for systems and developmental research. With 383 neurons in males and 302 neurons in hermaphrodites, the positions and function of neurons is remarkably conserved across individuals. Furthermore, C. elegans remains the only organism for which a complete cellular, lineage, and anatomical map of the entire nervous system has been described for both sexes. Here, I describe the analysis pipeline that we developed for the recently proposed NeuroPAL technique in C. elegans. Our proposed pipeline consists of atlas building (chapter 1), registration, segmentation, neural tracking (chapter 2), and signal extraction (chapter 3). I emphasize that categorizing the analysis techniques as a pipeline consisting of the above steps is general and can be applied to virtually every single animal model and emerging imaging modality. I use the language of probabilistic generative modeling and graphical models to communicate the ideas in a rigorous form, therefore some familiarity with those concepts could help the reader navigate through the chapters of this thesis more easily. In chapters 4 and 5 I build models that aim to automate hypothesis testing and causal interrogation of neural circuits. The notion of functional connectivity (FC) has been instrumental in our understanding of how information propagates in a neural circuit. However, an important limitation is that current techniques do not dissociate between causal connections and purely functional connections with no mechanistic correspondence. I start chapter 4 by introducing causal inference as a unifying language for the following chapters. In chapter 4 I define the notion of interventional connectivity (IC) as a way to summarize the effect of stimulation in a neural circuit providing a more mechanistic description of the information flow. I then investigate which functional connectivity metrics are best predictive of IC in simulations and real data. Following this framework, I discuss how stimulations and interventions can be used to improve fitting and generalization properties of time series models. Building on the literature of model identification and active causal discovery I develop a switching time series model and a method for finding stimulation patterns that help the model to generalize to the vicinity of the observed neural trajectories. Finally in chapter 5 I develop a new FC metric that separates the transferred information from one variable to the other into unique and synergistic sources. In all projects, I have abstracted out concepts that are specific to the datasets at hand and developed the methods in the most general form. This makes the presented methods applicable to a broad range of datasets, potentially leading to new findings. In addition, all projects are accompanied with extensible and documented code packages, allowing theorists to repurpose the modules for novel applications and experimentalists to run analysis on their datasets efficiently and scalably. In summary my main contribution in this thesis are the following: 1) Building the first atlases of hermaphrodite and male C. elegans and developing a generic statistical framework for constructing atlases for a broad range of datasets. 2) Developing a semi-automated analysis pipeline for neural registration, segmentation, and tracking in C. elegans. 3) Extending the framework of non-negative matrix factorization to datasets with deformable motion and developing algorithms for joint tracking and signal demixing from videos of semi-immobilized C. elegans. 4) Defining the notion of interventional connectivity (IC) as a way to summarize the effect of stimulation in a neural circuit and investigating which functional connectivity metrics are best predictive of IC in simulations and real data. 5) Developing a switching time series model and a method for finding stimulation patterns that help the model to generalize to the vicinity of the observed neural trajectories. 6) Developing a new functional connectivity metric that separates the transferred information from one variable to the other into unique and synergistic sources. 7) Implementing extensible, well documented, open source code packages for each of the above contributions
    • …
    corecore