10,443 research outputs found

    BoostFM: Boosted Factorization Machines for Top-N Feature-based Recommendation

    Get PDF
    Feature-based matrix factorization techniques such as Factorization Machines (FM) have been proven to achieve impressive accuracy for the rating prediction task. However, most common recommendation scenarios are formulated as a top-N item ranking problem with implicit feedback (e.g., clicks, purchases)rather than explicit ratings. To address this problem, with both implicit feedback and feature information, we propose a feature-based collaborative boosting recommender called BoostFM, which integrates boosting into factorization models during the process of item ranking. Specifically, BoostFM is an adaptive boosting framework that linearly combines multiple homogeneous component recommenders, which are repeatedly constructed on the basis of the individual FM model by a re-weighting scheme. Two ways are proposed to efficiently train the component recommenders from the perspectives of both pairwise and listwise Learning-to-Rank (L2R). The properties of our proposed method are empirically studied on three real-world datasets. The experimental results show that BoostFM outperforms a number of state-of-the-art approaches for top-N recommendation

    Neural Networks for CollaborativeFiltering

    Get PDF
    Recommender systems are an integral part of almost all modern e-commerce companies. They contribute significantly to the overall customer satisfaction by helping the user discover new and relevant items, which consequently leads to higher sales and stronger customer retention. It is, therefore, not surprising that large e-commerce shops like Amazon or streaming platforms like Netflix and Spotify even use multiple recommender systems to further increase user engagement. Finding the most relevant items for each user is a difficult task that is critically dependent on the available user feedback information. However, most users typically interact with products only through noisy implicit feedback, such as clicks or purchases, rather than providing explicit information about their preferences, such as product ratings. This usually makes large amounts of behavioural user data necessary to infer accurate user preferences. One popular approach to make the most use of both forms of feedback is called collaborative filtering. Here, the main idea is to compare individual user behaviour with the behaviour of all known users. Although there are many different collaborative filtering techniques, matrix factorization models are among the most successful ones. In contrast, while neural networks are nowadays the state-of-the-art method for tasks such as image recognition or natural language processing, they are still not very popular for collaborative filtering tasks. Therefore, the main focus of this thesis is the derivation of multiple wide neural network architectures to mimic and extend matrix factorization models for various collaborative filtering problems and to gain insights into the connection between these models. The basics of the proposed architecture are wide and shallow feedforward neural networks, which will be established for rating prediction tasks on explicit feedback datasets. These networks consist of large input and output layers, which allow them to capture user and item representation similar to matrix factorization models. By deriving all weight updates and comparing the structure of both models, it is proven that a simplified version of the proposed network can mimic common matrix factorization models: a result that has not been shown, as far as we know, in this form before. Additionally, various extensions are thoroughly evaluated. The new findings of this evaluation can also easily be transferred to other matrix factorization models. This neural network architecture can be extended to be used for personalized ranking tasks on implicit feedback datasets. For these problems, it is necessary to rank products according to individual preferences using only the provided implicit feedback. One of the most successful and influential approaches for personalized ranking tasks is Bayesian Personalized Ranking, which attempts to learn pairwise item rankings and can also be used in combination with matrix factorization models. It is shown, how the introduction of an additional ranking layer forces the network to learn pairwise item rankings. In addition, similarities between this novel neural network architecture and a matrix factorization model trained with Bayesian Personalized Ranking are proven. To the best of our knowledge, this is the first time that these connections have been shown. The state-of-the-art performance of this network is demonstrated in a detailed evaluation. The most comprehensive feedback datasets consist of a mixture of explicit as well as implicit feedback information. Here, the goal is to predict if a user will like an item, similar to rating prediction tasks, even if this user has never given any explicit feedback at all: a problem, that has not been covered by the collaborative filtering literature yet. The network to solve this task is composed out of two networks: one for the explicit and one for the implicit feedback. Additional item features are learned using the implicit feedback, which capture all information necessary to rank items. Afterwards, these features are used to improve the explicit feedback prediction. Both parts of this combined network have different optimization goals, are trained simultaneously and, therefore, influence each other. A detailed evaluation shows that this approach is helpful to improve the network's overall predictive performance especially for ranking metrics

    A Personalised Ranking Framework with Multiple Sampling Criteria for Venue Recommendation

    Get PDF
    Recommending a ranked list of interesting venues to users based on their preferences has become a key functionality in Location-Based Social Networks (LBSNs) such as Yelp and Gowalla. Bayesian Personalised Ranking (BPR) is a popular pairwise recommendation technique that is used to generate the ranked list of venues of interest to a user, by leveraging the user's implicit feedback such as their check-ins as instances of positive feedback, while randomly sampling other venues as negative instances. To alleviate the sparsity that affects the usefulness of recommendations by BPR for users with few check-ins, various approaches have been proposed in the literature to incorporate additional sources of information such as the social links between users, the textual content of comments, as well as the geographical location of the venues. However, such approaches can only readily leverage one source of additional information for negative sampling. Instead, we propose a novel Personalised Ranking Framework with Multiple sampling Criteria (PRFMC) that leverages both geographical influence and social correlation to enhance the effectiveness of BPR. In particular, we apply a multi-centre Gaussian model and a power-law distribution method, to capture geographical influence and social correlation when sampling negative venues, respectively. Finally, we conduct comprehensive experiments using three large-scale datasets from the Yelp, Gowalla and Brightkite LBSNs. The experimental results demonstrate the effectiveness of fusing both geographical influence and social correlation in our proposed PRFMC framework and its superiority in comparison to BPR-based and other similar ranking approaches. Indeed, our PRFMC approach attains a 37% improvement in MRR over a recently proposed approach that identifies negative venues only from social links

    VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback

    Full text link
    Modern recommender systems model people and items by discovering or `teasing apart' the underlying dimensions that encode the properties of items and users' preferences toward them. Critically, such dimensions are uncovered based on user feedback, often in implicit form (such as purchase histories, browsing logs, etc.); in addition, some recommender systems make use of side information, such as product attributes, temporal information, or review text. However one important feature that is typically ignored by existing personalized recommendation and ranking methods is the visual appearance of the items being considered. In this paper we propose a scalable factorization model to incorporate visual signals into predictors of people's opinions, which we apply to a selection of large, real-world datasets. We make use of visual features extracted from product images using (pre-trained) deep networks, on top of which we learn an additional layer that uncovers the visual dimensions that best explain the variation in people's feedback. This not only leads to significantly more accurate personalized ranking methods, but also helps to alleviate cold start issues, and qualitatively to analyze the visual dimensions that influence people's opinions.Comment: AAAI'1

    Joint Geo-Spatial Preference and Pairwise Ranking for Point-of-Interest Recommendation

    Get PDF
    Recommending users with preferred point-of-interests (POIs) has become an important task for location-based social networks, which facilitates users' urban exploration by helping them filter out unattractive locations. Although the influence of geographical neighborhood has been studied in the rating prediction task (i.e. regression), few work have exploited it to develop a ranking-oriented objective function to improve top-N item recommendations. To solve this task, we conduct a manual inspection on real-world datasets, and find that each individual's traits are likely to cluster around multiple centers. Hence, we propose a co-pairwise ranking model based on the assumption that users prefer to assign higher ranks to the POIs near previously rated ones. The proposed method can learn preference ordering from non-observed rating pairs, and thus can alleviate the sparsity problem of matrix factorization. Evaluation on two publicly available datasets shows that our method performs significantly better than state-of-the-art techniques for the top-N item recommendation task
    • …
    corecore