10,476 research outputs found

    Learning coupled forward-inverse models with combined prediction errors

    Get PDF
    Challenging tasks in unstructured environments require robots to learn complex models. Given a large amount of information, learning multiple simple models can offer an efficient alternative to a monolithic complex network. Training multiple models—that is, learning their parameters and their responsibilities—has been shown to be prohibitively hard as optimization is prone to local minima. To efficiently learn multiple models for different contexts, we thus develop a new algorithm based on expectation maximization (EM). In contrast to comparable concepts, this algorithm trains multiple modules of paired forward-inverse models by using the prediction errors of both forward and inverse models simultaneously. In particular, we show that our method yields a substantial improvement over only considering the errors of the forward models on tasks where the inverse space contains multiple solution

    Motor simulation via coupled internal models using sequential Monte Carlo

    Get PDF
    We describe a generative Bayesian model for action understanding in which inverse-forward internal model pairs are considered \u27hypotheses\u27 of plausible action goals that are explored in parallel via an approximate inference mechanism based on sequential Monte Carlo methods. The reenactment of internal model pairs can be considered a form of motor simulation, which supports both perceptual prediction and action understanding at the goal level. However, this procedure is generally considered to be computationally inefficient. We present a model that dynamically reallocates computational resources to more accurate internal models depending on both the available prior information and the prediction error of the inverse-forward models, and which leads to successful action recognition. We present experimental results that test the robustness and efficiency of our model in real-world scenarios

    An Inverse Optimal Control Approach to Explain Human Arm Reaching Control Based on Multiple Internal Models

    Get PDF
    Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS
    • …
    corecore