3,185 research outputs found

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption

    CCTV Surveillance System, Attacks and Design Goals

    Get PDF
    Closed Circuit Tele-Vision surveillance systems are frequently the subject of debate. Some parties seek to promote their benefits such as their use in criminal investigations and providing a feeling of safety to the public. They have also been on the receiving end of bad press when some consider intrusiveness has outweighed the benefits. The correct design and use of such systems is paramount to ensure a CCTV surveillance system meets the needs of the user, provides a tangible benefit and provides safety and security for the wider law-abiding public. In focusing on the normative aspects of CCTV, the paper raises questions concerning the efficiency of understanding contemporary forms of ‘social ordering practices’ primarily in terms of technical rationalities while neglecting other, more material and ideological processes involved in the construction of social order. In this paper, a 360-degree view presented on the assessment of the diverse CCTV video surveillance systems (VSS) of recent past and present in accordance with technology. Further, an attempt been made to compare different VSS with their operational strengths and their attacks. Finally, the paper concludes with a number of future research directions in the design and implementation of VSS

    New Generation of Instrumented Ranges: Enabling Automated Performance Analysis

    Get PDF
    Military training conducted on physical ranges that match a unit’s future operational environment provides an invaluable experience. Today, to conduct a training exercise while ensuring a unit’s performance is closely observed, evaluated, and reported on in an After Action Review, the unit requires a number of instructors to accompany the different elements. Training organized on ranges for urban warfighting brings an additional level of complexity—the high level of occlusion typical for these environments multiplies the number of evaluators needed. While the units have great need for such training opportunities, they may not have the necessary human resources to conduct them successfully. In this paper we report on our US Navy/ONR-sponsored project aimed at a new generation of instrumented ranges, and the early results we have achieved. We suggest a radically different concept: instead of recording multiple video streams that need to be reviewed and evaluated by a number of instructors, our system will focus on capturing dynamic individual warfighter pose data and performing automated performance evaluation. We will use an in situ network of automatically-controlled pan-tilt-zoom video cameras and personal position and orientation sensing devices. Our system will record video, reconstruct dynamic 3D individual poses, analyze, recognize events, evaluate performances, generate reports, provide real-time free exploration of recorded data, and even allow the user to generate ‘what-if’ scenarios that were never recorded. The most direct benefit for an individual unit will be the ability to conduct training with fewer human resources, while having a more quantitative account of their performance (dispersion across the terrain, ‘weapon flagging’ incidents, number of patrols conducted). The instructors will have immediate feedback on some elements of the unit’s performance. Having data sets for multiple units will enable historical trend analysis, thus providing new insights and benefits for the entire service.Office of Naval Researc

    Emerging technologies for learning report (volume 3)

    Get PDF

    Non-personal Data Collection for Toy User Interfaces

    Get PDF
    Toy-user-interfaces (ToyUI) are computing devices or peripherals that leverage interactivity and connectivity with other devices to promote physical and social play. ToyUI products may collect both personal and non-personal data (NPD) on their users. We propose nine data patterns for NPD collection as part of ToyUI design based on the study of 297 ToyUI items from both the literature and industry. In addition, we introduce a printed circuit board (PCB) used for rapid prototyping that enabled NPD data collection concerning both objects and users by gathering non-personal identification, positioning system, and motion tracking. We demonstrate the effectiveness of our hardware architecture by embedding it into two design scenarios, namely, closed rules and open-ended rules solutions. The objectives here are to assist the ToyUI makers in creating more meaningful play experiences while ensuring the privacy of children’s and their parents’ data

    Development of a reconfigurable assembly system with an integrated information management system

    Get PDF
    Thesis (M. Tech. (Engineering Electrical)) -- Central University of Technology, Free State, [2014]This dissertation evaluates the software and hardware components used to develop a Reconfigurable Assembly System with an Integrated Information Management System. The assembly system consists of a modular Cartesian robot and vision system. The research focuses on the reconfigurability, modularity, scalability and flexibility that can be achieved in terms of the software and hardware components used within the system. The assembly system can be divided into high-level control and low-level control components. All information related to the product, Cartesian positioning and processes to follow resides in the Information Management System. The Information Management System is the high-level component and consists of a database, web services and low-levelcontrol drivers. The high-level system responds to the data received from the low-level systems and determines the next process to take place. The low-level systems consist of the PLC (Programmable Logic Controller) and the vision system. The PLC controls the Cartesian robot’s motor controllers and handles all events raised by field devices (e g. sensors or push buttons). The vision system contains a number of pre-loaded inspections used to identify barcodes and parts, obtain positioning data and verify the products’ build quality. The Cartesian robot’s positioning data and the vision system’s inspections are controlled by the Information Management System. The results showed that the high-level control software components are able to add more modularity and reconfigurability to the system, as it can easily adapt to changes in the product. The high-level control components also have the ability to be reconfigured while the assembly system is online without affecting the assembly system. The low-level control system is better suited to handling the control of motor controllers, field devices and vision inspections over an industrial network

    Automatic Intruder Combat System: A way to Smart Border Surveillance

    Get PDF
    Security and safeguard of international borders have always been a dominant issue for every nation. A large part of a nation’s budget is provided to its defense system. Besides wars, illegal intrusion in terms of terrorism is a critical matter that causes severe harm to nation’s property. In India’s perspective, border patrolling by Border Security Forces (BSF) has already been practiced from a long time for surveillance. The patrolling parties are equipped with high-end surveillance equipments but yet an alternative to the ply of huge manpower and that too in harsh environmental conditions hasn’t been in existence. An automatic mechanism for smart surveillance and combat is proposed in this paper as a solution to the above-discussed problems. Smart surveillance requires automatic intrusion detection in the surveillance video, which is achieved by using optical flow information as motion features for intruder/human in the scene. The use of optical flow in the proposed smart surveillance makes it robust and more accurate. Use of a simple horizontal feature for fence detection makes system simple and faster to work in real-time. System is also designed to respond against the activities of intruders, of which auto combat is one kind of response

    Challenges in passenger use of mixed reality headsets in cars and other transportation

    Get PDF
    This paper examines key challenges in supporting passenger use of augmented and virtual reality headsets in transit. These headsets will allow passengers to break free from the restraints of physical displays placed in constrained environments such as cars, trains and planes. Moreover, they have the potential to allow passengers to make better use of their time by making travel more productive and enjoyable, supporting both privacy and immersion. However, there are significant barriers to headset usage by passengers in transit contexts. These barriers range from impediments that would entirely prevent safe usage and function (e.g. motion sickness) to those that might impair their adoption (e.g. social acceptability). We identify the key challenges that need to be overcome and discuss the necessary resolutions and research required to facilitate adoption and realize the potential advantages of using mixed reality headsets in transit
    • …
    corecore