1,849 research outputs found

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Fuzzy logic based approach for object feature tracking

    Get PDF
    This thesis introduces a novel technique for feature tracking in sequences of greyscale images based on fuzzy logic. A versatile and modular methodology for feature tracking using fuzzy sets and inference engines is presented. Moreover, an extension of this methodology to perform the correct tracking of multiple features is also presented. To perform feature tracking three membership functions are initially defined. A membership function related to the distinctive property of the feature to be tracked. A membership function is related to the fact of considering that the feature has smooth movement between each image sequence and a membership function concerns its expected future location. Applying these functions to the image pixels, the corresponding fuzzy sets are obtained and then mathematically manipulated to serve as input to an inference engine. Situations such as occlusion or detection failure of features are overcome using estimated positions calculated using a motion model and a state vector of the feature. This methodology was previously applied to track a single feature identified by the user. Several performance tests were conducted on sequences of both synthetic and real images. Experimental results are presented, analysed and discussed. Although this methodology could be applied directly to multiple feature tracking, an extension of this methodology has been developed within that purpose. In this new method, the processing sequence of each feature is dynamic and hierarchical. Dynamic because this sequence can change over time and hierarchical because features with higher priority will be processed first. Thus, the process gives preference to features whose location are easier to predict compared with features whose knowledge of their behavior is less predictable. When this priority value becomes too low, the feature will no longer tracked by the algorithm. To access the performance of this new approach, sequences of images where several features specified by the user are to be tracked were used. In the final part of this work, conclusions drawn from this work as well as the definition of some guidelines for future research are presented.Nesta tese é introduzida uma nova técnica de seguimento de pontos característicos de objectos em sequências de imagens em escala de cinzentos baseada em lógica difusa. É apresentada uma metodologia versátil e modular para o seguimento de objectos utilizando conjuntos difusos e motores de inferência. É também apresentada uma extensão desta metodologia para o correcto seguimento de múltiplos pontos característicos. Para se realizar o seguimento são definidas inicialmente três funções de pertença. Uma função de pertença está relacionada com a propriedade distintiva do objecto que desejamos seguir, outra está relacionada com o facto de se considerar que o objecto tem uma movimentação suave entre cada imagem da sequência e outra função de pertença referente à sua previsível localização futura. Aplicando estas funções de pertença aos píxeis da imagem, obtêm-se os correspondentes conjuntos difusos, que serão manipulados matematicamente e servirão como entrada num motor de inferência. Situações como a oclusão ou falha na detecção dos pontos característicos são ultrapassadas utilizando posições estimadas calculadas a partir do modelo de movimento e a um vector de estados do objecto. Esta metodologia foi inicialmente aplicada no seguimento de um objecto assinalado pelo utilizador. Foram realizados vários testes de desempenho em sequências de imagens sintéticas e também reais. Os resultados experimentais obtidos são apresentados, analisados e discutidos. Embora esta metodologia pudesse ser aplicada directamente ao seguimento de múltiplos pontos característicos, foi desenvolvida uma extensão desta metodologia para esse fim. Nesta nova metodologia a sequência de processamento de cada ponto característico é dinâmica e hierárquica. Dinâmica por ser variável ao longo do tempo e hierárquica por existir uma hierarquia de prioridades relativamente aos pontos característicos a serem seguidos e que determina a ordem pela qual esses pontos são processados. Desta forma, o processo dá preferência a pontos característicos cuja localização é mais fácil de prever comparativamente a pontos característicos cujo conhecimento do seu comportamento seja menos previsível. Quando esse valor de prioridade se torna demasiado baixo, esse ponto característico deixa de ser seguido pelo algoritmo. Para se observar o desempenho desta nova abordagem foram utilizadas sequências de imagens onde várias características indicadas pelo utilizador são seguidas. Na parte final deste trabalho são apresentadas as conclusões resultantes a partir do desenvolvimento deste trabalho, bem como a definição de algumas linhas de investigação futura

    Computer vision techniques for forest fire perception

    Get PDF
    This paper presents computer vision techniques for forest fire perception involving measurement of forest fire properties (fire front, flame height, flame inclination angle, fire base width) required for the implementation of advanced forest fire-fighting strategies. The system computes a 3D perception model of the fire and could also be used for visualizing the fire evolution in remote computer systems. The presented system integrates the processing of images from visual and infrared cameras. It applies sensor fusion techniques involving also telemetry sensors, and GPS. The paper also includes some results of forest fire experiments.European Commission EVG1-CT-2001-00043European Commission IST-2001-34304Ministerio de Educación y Ciencia DPI2005-0229

    A Novel and Effective Short Track Speed Skating Tracking System

    Get PDF
    This dissertation proposes a novel and effective system for tracking high-speed skaters. A novel registration method is employed to automatically discover key frames to build the panorama. Then, the homography between a frame and the real world rink can be generated accordingly. Aimed at several challenging tracking problems of short track skating, a novel multiple-objects tracking approach is proposed which includes: Gaussian mixture models (GMMs), evolving templates, constrained dynamical model, fuzzy model, multiple templates initialization, and evolution. The outputs of the system include spatialtemporal trajectories, velocity analysis, and 2D reconstruction animations. The tracking accuracy is about 10 cm (2 pixels). Such information is invaluable for sports experts. Experimental results demonstrate the effectiveness and robustness of the proposed system

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Variational segmentation problems using prior knowledge in imaging and vision

    Get PDF

    Cooperative multitarget tracking with efficient split and merge handling

    Get PDF
    Copyright © 2006 IEEEFor applications such as behavior recognition it is important to maintain the identity of multiple targets, while tracking them in the presence of splits and merges, or occlusion of the targets by background obstacles. Here we propose an algorithm to handle multiple splits and merges of objects based on dynamic programming and a new geometric shape matching measure. We then cooperatively combine Kalman filter-based motion and shape tracking with the efficient and novel geometric shape matching algorithm. The system is fully automatic and requires no manual input of any kind for initialization of tracking. The target track initialization problem is formulated as computation of shortest paths in a directed and attributed graph using Dijkstra's shortest path algorithm. This scheme correctly initializes multiple target tracks for tracking even in the presence of clutter and segmentation errors which may occur in detecting a target. We present results on a large number of real world image sequences, where upto 17 objects have been tracked simultaneously in real-time, despite clutter, splits, and merges in measurements of objects. The complete tracking system including segmentation of moving objects works at 25 Hz on 352times288 pixel color image sequences on a 2.8-GHz Pentium-4 workstationPankaj Kumar, Surendra Ranganath, Kuntal Sengupta, and Huang Weimi

    Facial Geometry Identification through Fuzzy Patterns with RGBD Sensor

    Get PDF
    Automatic human facial recognition is an important and complicated task; it is necessary to design algorithms capable of recognizing the constant patterns in the face and to use computing resources efficiently. In this paper we present a novel algorithm to recognize the human face in real time; the systems input is the depth and color data from the Microsoft KinectTM device. The algorithm recognizes patterns/shapes on the point cloud topography. The template of the face is based in facial geometry; the forensic theory classifies the human face with respect to constant patterns: cephalometric points, lines, and areas of the face. The topography, relative position, and symmetry are directly related to the craniometric points. The similarity between a point cloud cluster and a pattern description is measured by a fuzzy pattern theory algorithm. The face identification is composed by two phases: the first phase calculates the face pattern hypothesis of the facial points, configures each point shape, the related location in the areas, and lines of the face. Then, in the second phase, the algorithm performs a search on these face point configurations
    corecore