2,085 research outputs found

    Multi-modal Blind Source Separation with Microphones and Blinkies

    Full text link
    We propose a blind source separation algorithm that jointly exploits measurements by a conventional microphone array and an ad hoc array of low-rate sound power sensors called blinkies. While providing less information than microphones, blinkies circumvent some difficulties of microphone arrays in terms of manufacturing, synchronization, and deployment. The algorithm is derived from a joint probabilistic model of the microphone and sound power measurements. We assume the separated sources to follow a time-varying spherical Gaussian distribution, and the non-negative power measurement space-time matrix to have a low-rank structure. We show that alternating updates similar to those of independent vector analysis and Itakura-Saito non-negative matrix factorization decrease the negative log-likelihood of the joint distribution. The proposed algorithm is validated via numerical experiments. Its median separation performance is found to be up to 8 dB more than that of independent vector analysis, with significantly reduced variability.Comment: Accepted at IEEE ICASSP 2019, Brighton, UK. 5 pages. 3 figure

    Deep Clustering and Conventional Networks for Music Separation: Stronger Together

    Full text link
    Deep clustering is the first method to handle general audio separation scenarios with multiple sources of the same type and an arbitrary number of sources, performing impressively in speaker-independent speech separation tasks. However, little is known about its effectiveness in other challenging situations such as music source separation. Contrary to conventional networks that directly estimate the source signals, deep clustering generates an embedding for each time-frequency bin, and separates sources by clustering the bins in the embedding space. We show that deep clustering outperforms conventional networks on a singing voice separation task, in both matched and mismatched conditions, even though conventional networks have the advantage of end-to-end training for best signal approximation, presumably because its more flexible objective engenders better regularization. Since the strengths of deep clustering and conventional network architectures appear complementary, we explore combining them in a single hybrid network trained via an approach akin to multi-task learning. Remarkably, the combination significantly outperforms either of its components.Comment: Published in ICASSP 201

    Collaborative Deep Learning for Speech Enhancement: A Run-Time Model Selection Method Using Autoencoders

    Full text link
    We show that a Modular Neural Network (MNN) can combine various speech enhancement modules, each of which is a Deep Neural Network (DNN) specialized on a particular enhancement job. Differently from an ordinary ensemble technique that averages variations in models, the propose MNN selects the best module for the unseen test signal to produce a greedy ensemble. We see this as Collaborative Deep Learning (CDL), because it can reuse various already-trained DNN models without any further refining. In the proposed MNN selecting the best module during run time is challenging. To this end, we employ a speech AutoEncoder (AE) as an arbitrator, whose input and output are trained to be as similar as possible if its input is clean speech. Therefore, the AE can gauge the quality of the module-specific denoised result by seeing its AE reconstruction error, e.g. low error means that the module output is similar to clean speech. We propose an MNN structure with various modules that are specialized on dealing with a specific noise type, gender, and input Signal-to-Noise Ratio (SNR) value, and empirically prove that it almost always works better than an arbitrarily chosen DNN module and sometimes as good as an oracle result
    • …
    corecore