902 research outputs found

    Cardiovascular Disorder Detection with a PSO-Optimized Bi-LSTM Recurrent Neural Network Model

    Get PDF
    The medical community is facing ever-increasing difficulties in identifying and treating cardiovascular diseases. The World Health Organization (WHO) reports that despite the availability of numerous high-priced medical remedies for persons with heart problems, CVDs continue to be the main cause of mortality globally, accounting for over 21 million deaths annually. When cardiovascular diseases are identified and treated early on, they cause far fewer deaths. Deep learning models have facilitated automated diagnostic methods for early detection of these diseases. Cardiovascular diseases often present insidious symptoms that are difficult to identify in a timely manner. Prompt diagnosis of individuals with CVD and related conditions, such as high blood pressure or high cholesterol, is crucial to initiate appropriate treatment. Recurrent neural networks (RNNs) with gated recurrent units (GRUs) have recently emerged as a more advanced variant, capable of surpassing Long Short-Term Memory (LSTM) models in several applications. When compared to LSTMs, GRUs have the advantages of faster calculation and less memory usage. When it comes to CVD prediction, the bio-inspired Particle Swarm Optimization (PSO) algorithm provides a straightforward method of getting the best possible outcomes with minimal effort. This stochastic optimization method requires neither the gradient nor any differentiated form of the objective function and emulates the behaviour and intelligence of swarms. PSO employs a swarm of agents, called particles, that navigate the search space to find the best prediction type.This study primarily focuses on predicting cardiovascular diseases using effective feature selection and classification methods. For CVD forecasting, we offer a GRU model built on recurrent neural networks and optimized with particle swarms (RNN-GRU-PSO). We find that the proposed model significantly outperforms the state-of-the-art models (98.2% accuracy in predicting cardiovascular diseases) in a head-to-head comparison

    Contact-aware Human Motion Forecasting

    Full text link
    In this paper, we tackle the task of scene-aware 3D human motion forecasting, which consists of predicting future human poses given a 3D scene and a past human motion. A key challenge of this task is to ensure consistency between the human and the scene, accounting for human-scene interactions. Previous attempts to do so model such interactions only implicitly, and thus tend to produce artifacts such as "ghost motion" because of the lack of explicit constraints between the local poses and the global motion. Here, by contrast, we propose to explicitly model the human-scene contacts. To this end, we introduce distance-based contact maps that capture the contact relationships between every joint and every 3D scene point at each time instant. We then develop a two-stage pipeline that first predicts the future contact maps from the past ones and the scene point cloud, and then forecasts the future human poses by conditioning them on the predicted contact maps. During training, we explicitly encourage consistency between the global motion and the local poses via a prior defined using the contact maps and future poses. Our approach outperforms the state-of-the-art human motion forecasting and human synthesis methods on both synthetic and real datasets. Our code is available at https://github.com/wei-mao-2019/ContAwareMotionPred.Comment: Accepted to NeurIPS202

    Structure-based drug discovery with deep learning

    Get PDF
    Artificial intelligence (AI) in the form of deep learning bears promise for drug discovery and chemical biology, e.g.\textit{e.g.}, to predict protein structure and molecular bioactivity, plan organic synthesis, and design molecules de novo\textit{de novo}. While most of the deep learning efforts in drug discovery have focused on ligand-based approaches, structure-based drug discovery has the potential to tackle unsolved challenges, such as affinity prediction for unexplored protein targets, binding-mechanism elucidation, and the rationalization of related chemical kinetic properties. Advances in deep learning methodologies and the availability of accurate predictions for protein tertiary structure advocate for a renaissance\textit{renaissance} in structure-based approaches for drug discovery guided by AI. This review summarizes the most prominent algorithmic concepts in structure-based deep learning for drug discovery, and forecasts opportunities, applications, and challenges ahead

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science
    • …
    corecore