240 research outputs found

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    Petrophysical data prediction from seismic attributes using committee fuzzy inference system

    Get PDF
    This study presents an intelligent model based on fuzzy systems for making aquantitative formulation between seismic attributes and petrophysical data. The proposed methodology comprises two major steps. Firstly, the petrophysical data, including water saturation (Sw) and porosity, are predicted from seismic attributes using various Fuzzy Inference Systems (FIS), including Sugeno (SFIS), Mamdani (MFIS) and Larsen (LFIS). Secondly, a Committee Fuzzy Inference System (CFIS) is constructed using a hybrid Genetic Algorithms-Pattern Search (GA-PS) technique. The inputs of the CFIS model are the output averages of theFIS petrophysical data. The methodology is illustrated using 3D seismic and petrophysical data of 11 wells of an Iranian offshore oil field in the Persian Gulf. The performance of the CFIS model is compared with a Probabilistic Neural Network (PNN). The results show that the CFIS method performed better than neural network, the best individual fuzzy model and a simple averaging method

    MECHANICAL ENERGY HARVESTER FOR POWERING RFID SYSTEMS COMPONENTS: MODELING, ANALYSIS, OPTIMIZATION AND DESIGN

    Get PDF
    Finding alternative power sources has been an important topic of study worldwide. It is vital to find substitutes for finite fossil fuels. Such substitutes may be termed renewable energy sources and infinite supplies. Such limitless sources are derived from ambient energy like wind energy, solar energy, sea waves energy; on the other hand, smart cities megaprojects have been receiving enormous amounts of funding to transition our lives into smart lives. Smart cities heavily rely on smart devices and electronics, which utilize small amounts of energy to run. Using batteries as the power source for such smart devices imposes environmental and labor cost issues. Moreover, in many cases, smart devices are in hard-to-access places, making accessibility for disposal and replacement difficult. Finally, battery waste harms the environment. To overcome these issues, vibration-based energy harvesters have been proposed and implemented. Vibration-based energy harvesters convert the dynamic or kinetic energy which is generated due to the motion of an object into electric energy. Energy transduction mechanisms can be delivered based on piezoelectric, electromagnetic, or electrostatic methods; the piezoelectric method is generally preferred to the other methods, particularly if the frequency fluctuations are considerable. In response, piezoelectric vibration-based energy harvesters (PVEHs), have been modeled and analyzed widely. However, there are two challenges with PVEH: the maximum amount of extractable voltage and the effective (operational) frequency bandwidth are often insufficient. In this dissertation, a new type of integrated multiple system comprised of a cantilever and spring-oscillator is proposed to improve and develop the performance of the energy harvester in terms of extractable voltage and effective frequency bandwidth. The new energy harvester model is proposed to supply sufficient energy to power low-power electronic devices like RFID components. Due to the temperature fluctuations, the thermal effect over the performance of the harvester is initially studied. To alter the resonance frequency of the harvester structure, a rotating element system is considered and analyzed. In the analytical-numerical analysis, Hamilton’s principle along with Galerkin’s decomposition approach are adopted to derive the governing equations of the harvester motion and corresponding electric circuit. It is observed that integration of the spring-oscillator subsystem alters the boundary condition of the cantilever and subsequently reforms the resulting characteristic equation into a more complicated nonlinear transcendental equation. To find the resonance frequencies, this equation is solved numerically in MATLAB. It is observed that the inertial effects of the oscillator rendered to the cantilever via the restoring force effects of the spring significantly alter vibrational features of the harvester. Finally, the voltage frequency response function is analytically and numerically derived in a closed-from expression. Variations in parameter values enable the designer to mutate resonance frequencies and mode shape functions as desired. This is particularly important, since the generated energy from a PVEH is significant only if the excitation frequency coming from an external source matches the resonance (natural) frequency of the harvester structure. In subsequent sections of this work, the oscillator mass and spring stiffness are considered as the design parameters to maximize the harvestable voltage and effective frequency bandwidth, respectively. For the optimization, a genetic algorithm is adopted to find the optimal values. Since the voltage frequency response function cannot be implemented in a computer algorithm script, a suitable function approximator (regressor) is designed using fuzzy logic and neural networks. The voltage function requires manual assistance to find the resonance frequency and cannot be done automatically using computer algorithms. Specifically, to apply the numerical root-solver, one needs to manually provide the solver with an initial guess. Such an estimation is accomplished using a plot of the characteristic equation along with human visual inference. Thus, the entire process cannot be automated. Moreover, the voltage function encompasses several coefficients making the process computationally expensive. Thus, training a supervised machine learning regressor is essential. The trained regressor using adaptive-neuro-fuzzy-inference-system (ANFIS) is utilized in the genetic optimization procedure. The optimization problem is implemented, first to find the maximum voltage and second to find the maximum widened effective frequency bandwidth, which yields the optimal oscillator mass value along with the optimal spring stiffness value. As there is often no control over the external excitation frequency, it is helpful to design an adaptive energy harvester. This means that, considering a specific given value of the excitation frequency, energy harvester system parameters (oscillator mass and spring stiffness) need to be adjusted so that the resulting natural (resonance) frequency of the system aligns with the given excitation frequency. To do so, the given excitation frequency value is considered as the input and the system parameters are assumed as outputs which are estimated via the neural network fuzzy logic regressor. Finally, an experimental setup is implemented for a simple pure cantilever energy harvester triggered by impact excitations. Unlike the theoretical section, the experimental excitation is considered to be an impact excitation, which is a random process. The rationale for this is that, in the real world, the external source is a random trigger. Harmonic base excitations used in the theoretical chapters are to assess the performance of the energy harvester per standard criteria. To evaluate the performance of a proposed energy harvester model, the input excitation type consists of harmonic base triggers. In summary, this dissertation discusses several case studies and addresses key issues in the design of optimized piezoelectric vibration-based energy harvesters (PVEHs). First, an advanced model of the integrated systems is presented with equation derivations. Second, the proposed model is decomposed and analyzed in terms of mechanical and electrical frequency response functions. To do so, analytic-numeric methods are adopted. Later, influential parameters of the integrated system are detected. Then the proposed model is optimized with respect to the two vital criteria of maximum amount of extractable voltage and widened effective (operational) frequency bandwidth. Corresponding design (influential) parameters are found using neural network fuzzy logic along with genetic optimization algorithms, i.e., a soft computing method. The accuracy of the trained integrated algorithms is verified using the analytical-numerical closed-form expression of the voltage function. Then, an adaptive piezoelectric vibration-based energy harvester (PVEH) is designed. This final design pertains to the cases where the excitation (driving) frequency is given and constant, so the desired goal is to match the natural frequency of the system with the given driving frequency. In this response, a regressor using neural network fuzzy logic is designed to find the proper design parameters. Finally, the experimental setup is implemented and tested to report the maximum voltage harvested in each test execution

    Fuzzy jump wavelet neural network based on rule induction for dynamic nonlinear system identification with real data applications

    Get PDF
    Aim Fuzzy wavelet neural network (FWNN) has proven to be a promising strategy in the identification of nonlinear systems. The network considers both global and local properties, deals with imprecision present in sensory data, leading to desired precisions. In this paper, we proposed a new FWNN model nominated “Fuzzy Jump Wavelet Neural Network” (FJWNN) for identifying dynamic nonlinear-linear systems, especially in practical applications. Methods The proposed FJWNN is a fuzzy neural network model of the Takagi-Sugeno-Kang type whose consequent part of fuzzy rules is a linear combination of input regressors and dominant wavelet neurons as a sub-jump wavelet neural network. Each fuzzy rule can locally model both linear and nonlinear properties of a system. The linear relationship between the inputs and the output is learned by neurons with linear activation functions, whereas the nonlinear relationship is locally modeled by wavelet neurons. Orthogonal least square (OLS) method and genetic algorithm (GA) are respectively used to purify the wavelets for each sub-JWNN. In this paper, fuzzy rule induction improves the structure of the proposed model leading to less fuzzy rules, inputs of each fuzzy rule and model parameters. The real-world gas furnace and the real electromyographic (EMG) signal modeling problem are employed in our study. In the same vein, piecewise single variable function approximation, nonlinear dynamic system modeling, and Mackey–Glass time series prediction, ratify this method superiority. The proposed FJWNN model is compared with the state-of-the-art models based on some performance indices such as RMSE, RRSE, Rel ERR%, and VAF%. Results The proposed FJWNN model yielded the following results: RRSE (mean±std) of 10e-5±6e-5 for piecewise single-variable function approximation, RMSE (mean±std) of 2.6–4±2.6e-4 for the first nonlinear dynamic system modelling, RRSE (mean±std) of 1.59e-3±0.42e-3 for Mackey–Glass time series prediction, RMSE of 0.3421 for gas furnace modelling and VAF% (mean±std) of 98.24±0.71 for the EMG modelling of all trial signals, indicating a significant enhancement over previous methods. Conclusions The FJWNN demonstrated promising accuracy and generalization while moderating network complexity. This improvement is due to applying main useful wavelets in combination with linear regressors and using fuzzy rule induction. Compared to the state-of-the-art models, the proposed FJWNN yielded better performance and, therefore, can be considered a novel tool for nonlinear system identificationPeer ReviewedPostprint (published version

    Multi-segment multi-criteria approach for selection of trenchless construction methods

    Get PDF
    The research work presented in this thesis has two broad objectives as well as five individual goals. The first objective is to search and determine the minimum cost and corresponding goodness-of-fit by using a different combination of methods that are capable of resolving the problem that exists in multiple segments. This approach can account for variations in unit price and the cost of the design and the inspection associated with multiple methods. The second objective is to calculate the minimum risk for the preferred solution set. The five individual goals are 1) reduction in total cost, 2) application of Genetic Algorithm (GA) for construction method selection with focus on trenchless technology, 3) application of Fuzzy Inference System for likelihood of risk, 4) risk assessment in HDD projects, and 5) Carbon footprint calculation. In most construction projects, multiple segments are involved in a single project. However, there is no single model developed yet to aid the selection of appropriate method(s) based on the consideration of multiple-criteria. In this study, a multi-segment conceptualizes a combination of individuals or groups of mainlines, manholes, and laterals. Multi-criteria takes into account the technical viability, direct cost, social cost, carbon footprint, and risks in the pipelines. Three different segments analyzed are 1) an 8 inch diameter, 280 foot long gravity sewer pipe, 2) a 21 inch diameter, 248 foot long gravity sewer pipe, and 3) a 12 inch diameter, 264 foot long gravity sewer pipe. It is found that GA would not only eliminate the shortcomings of competing mathematical approaches, but also enables complex optimization scenarios to be examined quickly to the optimization of multi-criteria for multi-segments. Furthermore, GA follows a uniform iterative procedure that is easy to code and decode for running the algorithm. Any trenchless installation project is associated with some level of risk. Due to the underground installation of trenchless technologies, the buried risk could be catastrophic if not assessed promptly. Therefore, risk management plays a key role in the construction of utilities. Conventional risk assessment approach quantifies risk as a product of likelihood and severity of risk, and does not consider the interrelation among different risk input variables. However, in real life installation projects, the input factors are interconnected, somewhat overlapped, and exist with fuzziness or vagueness. Fuzzy logic system surpasses this shortcoming and delivers the output through a process of fuzzification, fuzzy inference, fuzzy rules, and defuzzification. It is found in the study that Mamdani FIS has the potential to address the fuzziness, interconnection, and overlapping of different input variables and compute an overall risk output for a given scenario which is beyond the scope of conventional risk assessment

    Data Analytic Approach to Support the Activation of Special Signal Timing Plans in Response to Congestion

    Get PDF
    Improving arterial network performance has become a major challenge that is significantly influenced by signal timing control. In recent years, transportation agencies have begun focusing on Active Arterial Management Program (AAM) strategies to manage the performance of arterial streets under the flagship of Transportation Systems Management & Operations (TSM&O) initiatives. The activation of special traffic signal plans during non-recurrent events is an essential component of AAM and can provide significant benefits in managing congestion. Events such as surges in demands or lane blockages can create queue spillbacks, even during off-peak periods resulting in delays and spillbacks to upstream intersections. To address this issue, some transportation agencies have started implementing processes to change the signal timing in real time based on traffic signal engineer/expert observations of incident and traffic conditions at the intersections upstream and downstream of congested locations. This dissertation develops methods to automate and enhance such decisions made at traffic management centers. First, a method is developed to learn from experts’ decisions by utilizing a combination of Recursive Partitioning and Regression Decision Tree (RPART) and Fuzzy Rule-Based System (FRBS) to deal with the vagueness and uncertainty of human decisions. This study demonstrates the effectiveness of this method in selecting plans to reduce congestion during non-recurrent events. However, the method can only recommend the changes in green time to the movement affected by the incident and does not give an optimized solution that considers all movements. Thus, there was a need to extend the method to decide how the reduction of green times should be distributed to other movements at the intersection. Considering the above, this dissertation further develops a method to derive optimized signal timing plans during non-recurrent congestion that considers the operations of the critical direction impacted by the incident, the overall corridor, as well as the critical intersection movement performance. The prerequisite of optimizing the signal plans is the accurate measurements of traffic flow conditions and turning movement counts. It is also important to calibrate any utilized simulation and optimization models to replicate the field traffic states according to field traffic conditions and local driver behaviors. This study evaluates the identified special signal-timing plan based on both the optimization and the DT and FRBS approaches. Although the DT and FRBS model outputs are able to reduce the existing queue and improve all other performance measures, the evaluation results show that the special signal timing plan obtained from the optimization method produced better performance compared to the DT and FRBS approaches for all of the evaluated non-recurrent conditions. However, there are opportunities to combine both approaches for the best selection of signal plans

    Control of a benchmark structure using GA-optimized fuzzy logic control

    Get PDF
    Mitigation of displacement and acceleration responses of a three story benchmark structure excited by seismic motions is pursued in this study. Multiple 20-kN magnetorheological (MR) dampers are installed in the three-story benchmark structure and managed by a global fuzzy logic controller to provide smart damping forces to the benchmark structure. Two configurations of MR damper locations are considered to display multiple-input, single-output and multiple-input, multiple-output control capabilities. Characterization tests of each MR damper are performed in a laboratory to enable the formulation of fuzzy inference models. Prediction of MR damper forces by the fuzzy models shows sufficient agreement with experimental results. A controlled-elitist multi-objective genetic algorithm is utilized to optimize a set of fuzzy logic controllers with concurrent consideration to four structural response metrics. The genetic algorithm is able to identify optimal passive cases for MR damper operation, and then further improve their performance by intelligently modulating the command voltage for concurrent reductions of displacement and acceleration responses. An optimal controller is identified and validated through numerical simulation and fullscale experimentation. Numerical and experimental results show that performance of the controller algorithm is superior to optimal passive cases in 43% of investigated studies. Furthermore, the state-space model of the benchmark structure that is used in numerical simulations has been improved by a modified version of the same genetic algorithm used in development of fuzzy logic controllers. Experimental validation shows that the state-space model optimized by the genetic algorithm provides accurate prediction of response of the benchmark structure to base excitation

    Monitoring of Tool Wear and Surface Roughness Using ANFIS Method During CNC Turning of CFRP Composite

    Get PDF
    Carbon fiber-reinforced plastic (CFRP) is gaining wide acceptance in areas including sports, aerospace and automobile industry . Because of its superior mechanical qualities and lower weight than metals, it needs effective and efficient machining methods. In this study, the relationship between the cutting parameters (Speed, Feed, Depth of Cut) and response parameters (Vibration, Surface Finish, Cutting Force and Tool Wear) are investigated for CFRP composite. For machining of CFRP, CNC turning operation with coated carbide tool is used. An ANFIS model with two MISO system has been developed to predict the tool wear and surface finish. Speed, feed, depth of cut, vibration and cutting force have been used as input parameters and tool wear and surface finish have been used as output parameter. Three sets of cutting parameter have been used to gather the data points for continuous turning of CFRP composite. The model merged fuzzy inference modeling with artificial neural network learning abilities, and a set of rules is constructed directly from experimental data. However, Design of Experiments (DOE) confirmation of this experiment fails because of multi-collinearity problem in the dataset and insufficient experimental data points to predict the tool wear and surface roughness effectively using ANFIS methodology. Therefore, the result of this experiment do not provide a proper representation, and result in a failure to conform to a correct DOE approach

    Curvature-based sparse rule base generation for fuzzy rule interpolation

    Get PDF
    Fuzzy logic has been successfully widely utilised in many real-world applications. The most common application of fuzzy logic is the rule-based fuzzy inference system, which is composed of mainly two parts including an inference engine and a fuzzy rule base. Conventional fuzzy inference systems always require a rule base that fully covers the entire problem domain (i.e., a dense rule base). Fuzzy rule interpolation (FRI) makes inference possible with sparse rule bases which may not cover some parts of the problem domain (i.e., a sparse rule base). In addition to extending the applicability of fuzzy inference systems, fuzzy interpolation can also be used to reduce system complexity for over-complex fuzzy inference systems. There are typically two methods to generate fuzzy rule bases, i.e., the knowledge driven and data-driven approaches. Almost all of these approaches only target dense rule bases for conventional fuzzy inference systems. The knowledge-driven methods may be negatively affected by the limited availability of expert knowledge and expert knowledge may be subjective, whilst redundancy often exists in fuzzy rule-based models that are acquired from numerical data. Note that various rule base reduction approaches have been proposed, but they are all based on certain similarity measures and are likely to cause performance deterioration along with the size reduction. This project, for the first time, innovatively applies curvature values to distinguish important features and instances in a dataset, to support the construction of a neat and concise sparse rule base for fuzzy rule interpolation. In addition to working in a three-dimensional problem space, the work also extends the natural three-dimensional curvature calculation to problems with high dimensions, which greatly broadens the applicability of the proposed approach. As a result, the proposed approach alleviates the ‘curse of dimensionality’ and helps to reduce the computational cost for fuzzy inference systems. The proposed approach has been validated and evaluated by three real-world applications. The experimental results demonstrate that the proposed approach is able to generate sparse rule bases with less rules but resulting in better performance, which confirms the power of the proposed system. In addition to fuzzy rule interpolation, the proposed curvature-based approach can also be readily used as a general feature selection tool to work with other machine learning approaches, such as classifiers
    • 

    corecore