7 research outputs found

    Multiple Foci Drill-Down through Tuple and Attribute Polyarchies in Tabular Data.

    Get PDF
    Information analysis often involves decomposing data into sub-groups to allow for comparison and identification of relationships. Breakdown Visualization provides a mechanism to support this analysis through user guided drill-down of polyarchical metadata. This metadata describes multiple hierarchical structures for organizing tuple aggregation and table attributes. This structure is seen in sport statistics, financial data, organizational structures, and other fields. A spreadsheet format enables comparison of visualizations at each level of the hierarchy. Breakdown Visualization allows users to drill-down a single hierarchy then pivot into another hierarchy within the same view. We utilize a fix and move technique that allows users to select multiple foci for drill-down. We present an analysis scenario that demonstrates how Breakdown Visualization can be used to perform financial statement analysi

    iHAT: interactive Hierarchical Aggregation Table for Genetic Association Data

    Get PDF
    In the search for single-nucleotide polymorphisms which influence the observable phenotype, genome wide association studies have become an important technique for the identification of associations between genotype and phenotype of a diverse set of sequence-based data. We present a methodology for the visual assessment of single-nucleotide polymorphisms using interactive hierarchical aggregation techniques combined with methods known from traditional sequence browsers and cluster heatmaps. Our tool, the interactive Hierarchical Aggregation Table (iHAT), facilitates the visualization of multiple sequence alignments, associated metadata, and hierarchical clusterings. Different color maps and aggregation strategies as well as filtering options support the user in finding correlations between sequences and metadata. Similar to other visualizations such as parallel coordinates or heatmaps, iHAT relies on the human pattern-recognition ability for spotting patterns that might indicate correlation or anticorrelation. We demonstrate iHAT using artificial and real-world datasets for DNA and protein association studies as well as expression Quantitative Trait Locus data

    A survey of multiple tree visualisation.

    Get PDF
    This paper summarises the state-of-the-art in multiple tree visualisations. It discusses the spectrum of current representation techniques used on single trees, pairs of trees and finally multiple trees, in order to identify which representations are best suited to particular tasks and to find gaps in the representation space where opportunities for future multiple tree visualisation research may exist. The application areas from where multiple tree data are derived are enumerated, and the distinct structures that multiple trees make in combination with each other and the effect on subsequent approaches to their visualisation are discussed, along with the basic high-level goals of existing multiple tree visualisations

    Integration of heterogeneous multidimensional data marts

    Get PDF
     Data analysts often require access to integrated multidimensional data from local and external data warehouses. The integration process is often undertaken by expert database practitioners who will need to analyze the structure of the data, and match schemas and data before creating an integrated view of the data for visualization and analysis. Such a manual process may be acceptable for databases used in transaction processing applications but does not help decision makers who need access to the information quickly and cost effective in a constantly changing environment. This thesis addresses several challenges towards automating the integration of data warehouses based on a dimensional model known as Star schema. We recognize that the structure of multidimensional data, namely dimension hierarchies, is critical to the accuracy of the integration but is not always available or accessible. To address this problem, we infer dimension hierarchies from their instances, and demonstrate that they are sufficient to ensure the accuracy of the integration even though they may vary from the intended hierarchies. To improve the accuracy of matching Star schemas, we propose a more precise representation of Star schemas and demonstrate its effectiveness by comparing it against the existing approaches that treat Star schemas as relational models. To match instances of dimensions, we demonstrate that a graph matching algorithm is effective and performs with a high level of accuracy. We propose algorithms which enforce the tree structure of integrated data which is necessary for correct aggregation, and reduce false positive cases occurring during the instance matching. The effectiveness of our algorithms is shown through experiments with real life data. Despite perfectly matching schemas and hierarchies, there are often dimensions with mismatching data which restrict the scope of the integration. We propose to relax the requirement for dimension compatibility, and introduce measures that quantify the loss of data resulting from the less strict requirement. These measures enable data analysts to identify lossless fragments of data, and thereby, extend the scope of the integrated data. To provide a more comprehensive view of data for analysis, we link the integrated data with the data exclusive to each source by extending the navigation operation for multidimensional data. These contributions help towards shifting the integration problem away from expert database practitioners to empowered data analysts in combining multidimensional data from multiple sources in real time, and in a cost effective manner

    Statistical Anomaly Discovery Through Visualization

    Get PDF
    Developing a deep understanding of data is a crucial part of decision-making processes. It often takes substantial time and effort to develop a solid understanding to make well-informed decisions. Data analysts often perform statistical analyses through visualization to develop such understanding. However, applicable insight can be difficult due to biases and anomalies in data. An often overlooked phenomenon is mix effects, in which subgroups of data exhibit patterns opposite to the data as a whole. This phenomenon is widespread and often leads inexperienced analysts to draw contradictory conclusions. Discovering such anomalies in data becomes challenging as data continue to grow in volume, dimensionality, and cardinality. Effectively designed data visualizations empower data analysts to reveal and understand patterns in data for studying such paradoxical anomalies. This research explores several approaches for combining statistical analysis and visualization to discover and examine anomalies in multidimensional data. It starts with an automatic anomaly detection method based on correlation comparison and experiments to determine the running time and complexity of the algorithm. Subsequently, the research investigates the design, development, and implementation of a series of visualization techniques to fulfill the needs of analysis through a variety of statistical methods. We create an interactive visual analysis system, Wiggum, for revealing various forms of mix effects. A user study to evaluate Wiggum strengthens understanding of the factors that contribute to the comprehension of statistical concepts. Furthermore, a conceptual model, visual correspondence, is presented to study how users can determine the identity of items between visual representations by interpreting the relationships between their respective visual encodings. It is practical to build visualizations with highly linked views informed by visual correspondence theory. We present a hybrid tree visualization technique, PatternTree, which applies the visual correspondence theory. PatternTree supports users to more readily discover statistical anomalies and explore their relationships. Overall, this dissertation contributes a merging of new visualization theory and designs for analysis of statistical anomalies, thereby leading the way to the creation of effective visualizations for statistical analysis

    Agrupamento de dados visual interactivo

    Get PDF
    Com a crescente geração, armazenamento e disseminação da informação nos últimos anos, o anterior problema de falta de informação transformou-se num problema de extracção do conhecimento útil a partir da informação disponível. As representações visuais da informação abstracta têm sido utilizadas para auxiliar a interpretação os dados e para revelar padrões de outra forma escondidos. A visualização de informação procura aumentar a cognição humana aproveitando as capacidades visuais humanas, de forma a tornar perceptível a informação abstracta, fornecendo os meios necessários para que um humano possa absorver quantidades crescentes de informação, com as suas capacidades de percepção. O objectivo das técnicas de agrupamento de dados consiste na divisão de um conjunto de dados em vários grupos, em que dados semelhantes são colocados no mesmo grupo e dados dissemelhantes em grupos diferentes. Mais especificamente, o agrupamento de dados com restrições tem o intuito de incorporar conhecimento a priori no processo de agrupamento de dados, com o objectivo de aumentar a qualidade do agrupamento de dados e, simultaneamente, encontrar soluções apropriadas a tarefas e interesses específicos. Nesta dissertação é estudado a abordagem de Agrupamento de Dados Visual Interactivo que permite ao utilizador, através da interacção com uma representação visual da informação, incorporar o seu conhecimento prévio acerca do domínio de dados, de forma a influenciar o agrupamento resultante para satisfazer os seus objectivos. Esta abordagem combina e estende técnicas de visualização interactiva de informação, desenho de grafos de forças direccionadas e agrupamento de dados com restrições. Com o propósito de avaliar o desempenho de diferentes estratégias de interacção com o utilizador, são efectuados estudos comparativos utilizando conjuntos de dados sintéticos e reais.With the rising generation, storage and dissemination of information in recent years, the previous problem of lack of information has become a problem of extracting useful knowledge from the information available. The visual representations of abstract information have been used to assist in interpreting the data and reveal otherwise hidden patterns. Information visualization seeks to enhance human cognition by leveraging human visual capabilities to make sense of abstract information, providing means by which humans with constant perceptual abilities can absorb increasing amounts of information. Data clustering techniques purpose is to partition a data set into several clusters, in which similar data is placed in the same cluster and dissimilar data in different clusters. More specifically, constrained clustering methods are intended to incorporate a priori knowledge in the clustering process, in order to improve data clustering quality and, simultaneously, find appropriate solutions to specific tasks or interests . This thesis studied the interactive visual clustering approach that allows the user, through interaction with a visual representation of information, to incorporate prior knowledge about the data domain in order to influence the resulting grouping to meet its objectives. This approach combines and extends interactive information visualization, force directed graph layout and constrained clustering techniques. With the purpose of evaluating the performance of different user interaction strategies, comparative studies using sets of synthetic and real data are performed
    corecore