150 research outputs found

    Intelligent maintenance management in a reconfigurable manufacturing environment using multi-agent systems

    Get PDF
    Thesis (M. Tech.) -- Central University of Technology, Free State, 2010Traditional corrective maintenance is both costly and ineffective. In some situations it is more cost effective to replace a device than to maintain it; however it is far more likely that the cost of the device far outweighs the cost of performing routine maintenance. These device related costs coupled with the profit loss due to reduced production levels, makes this reactive maintenance approach unacceptably inefficient in many situations. Blind predictive maintenance without considering the actual physical state of the hardware is an improvement, but is still far from ideal. Simply maintaining devices on a schedule without taking into account the operational hours and workload can be a costly mistake. The inefficiencies associated with these approaches have contributed to the development of proactive maintenance strategies. These approaches take the device health state into account. For this reason, proactive maintenance strategies are inherently more efficient compared to the aforementioned traditional approaches. Predicting the health degradation of devices allows for easier anticipation of the required maintenance resources and costs. Maintenance can also be scheduled to accommodate production needs. This work represents the design and simulation of an intelligent maintenance management system that incorporates device health prognosis with maintenance schedule generation. The simulation scenario provided prognostic data to be used to schedule devices for maintenance. A production rule engine was provided with a feasible starting schedule. This schedule was then improved and the process was determined by adhering to a set of criteria. Benchmarks were conducted to show the benefit of optimising the starting schedule and the results were presented as proof. Improving on existing maintenance approaches will result in several benefits for an organisation. Eliminating the need to address unexpected failures or perform maintenance prematurely will ensure that the relevant resources are available when they are required. This will in turn reduce the expenditure related to wasted maintenance resources without compromising the health of devices or systems in the organisation

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Intrinsic Hardware Evolution on the Transistor Level

    Get PDF
    This thesis presents a novel approach to the automated synthesis of analog circuits. Evolutionary algorithms are used in conjunction with a fitness evaluation on a dedicated ASIC that serves as the analog substrate for the newly bred candidate solutions. The advantage of evaluating the candidate circuits directly in hardware is twofold. First, it may speed up the evolutionary algorithms, because hardware tests can usually be performed faster than simulations. Second, the evolved circuits are guaranteed to work on a real piece of silicon. The proposed approach is realized as a hardware evolution system consisting of an IBM compatible general purpose computer that hosts the evolutionary algorithm, an FPGA-based mixed signal test board, and the analog substrate. The latter one is designed as a Field Programmable Transistor Array (FPTA) whose programmable transistor cells can be almost freely connected. The transistor cells can be configured to adopt one out of 75 different channel geometries. The chip was produced in a 0.6µm CMOS process and provides ample means for the input and output of analog signals. The configuration is stored in SRAM cells embedded in the programmable transistor cells. The hardware evolution system is used for numerous evolution experiments targeted at a wide variety of different circuit functionalities. These comprise logic gates, Gaussian function circuits, D/A converters, low- and highpass filters, tone discriminators, and comparators. The experimental results are thoroughly analyzed and discussed with respect to related work

    Automation and Control

    Get PDF
    Advances in automation and control today cover many areas of technology where human input is minimized. This book discusses numerous types and applications of automation and control. Chapters address topics such as building information modeling (BIM)–based automated code compliance checking (ACCC), control algorithms useful for military operations and video games, rescue competitions using unmanned aerial-ground robots, and stochastic control systems

    Techniques and Emerging Trends for State of the Art Equipment Maintenance Systems - A Bibliometric Analysis

    Get PDF
    The increasing interconnection of machines in industrial production on one hand, and the improved capabilities to store, retrieve, and analyze large amounts of data on the other, offer promising perspectives for maintaining production machines. Recently, predictive maintenance has gained increasing attention in the context of equipment maintenance systems. As opposed to other approaches, predictive maintenance relies on machine behavior models, which offer several advantages. In this highly interdisciplinary field, there is a lack of a literature review of relevant research fields and realization techniques. To obtain a comprehensive overview on the state of the art, large data sets of relevant literature need to be considered and, best case, be automatically partitioned into relevant research fields. A proper methodology to obtain such an overview is the bibliometric analysis method. In the presented work, we apply a bibliometric analysis to the field of equipment maintenance systems. To be more precise, we analyzed clusters of identified literature with the goal to obtain deeper insight into the related research fields. Moreover, cluster metrics reveal the importance of a single paper and an investigation of the temporal cluster development indicates the evolution of research topics. In this context, we introduce a new measure to compare results from different time periods in an appropriate way. In turn, among others, this simplifies the analysis of topics, with a vast amount of subtopics. Altogether, the obtained results particularly provide a comprehensive overview of established techniques and emerging trends for equipment maintenance systems

    On the requirements of digital twin-driven autonomous maintenance

    Get PDF
    Autonomy has become a focal point for research and development in many industries. Whilst this was traditionally achieved by modelling self-engineering behaviours at the component-level, efforts are now being focused on the sub-system and system-level through advancements in artificial intelligence. Exploiting its benefits requires some innovative thinking to integrate overarching concepts from big data analysis, digitisation, sensing, optimisation, information technology, and systems engineering. With recent developments in Industry 4.0, machine learning and digital twin, there has been a growing interest in adapting these concepts to achieve autonomous maintenance; the automation of predictive maintenance scheduling directly from operational data and for in-built repair at the systems-level. However, there is still ambiguity whether state-of-the-art developments are truly autonomous or they simply automate a process. In light of this, it is important to present the current perspectives about where the technology stands today and indicate possible routes for the future. As a result, this effort focuses on recent trends in autonomous maintenance before moving on to discuss digital twin as a vehicle for decision making from the viewpoint of requirements, whilst the role of AI in assisting with this process is also explored. A suggested framework for integrating digital twin strategies within maintenance models is also discussed. Finally, the article looks towards future directions on the likely evolution and implications for its development as a sustainable technolog

    Dependency Management 2.0 – A Semantic Web Enabled Approach

    Get PDF
    Software development and evolution are highly distributed processes that involve a multitude of supporting tools and resources. Application programming interfaces are commonly used by software developers to reduce development cost and complexity by reusing code developed by third-parties or published by the open source community. However, these application programming interfaces have also introduced new challenges to the Software Engineering community (e.g., software vulnerabilities, API incompatibilities, and software license violations) that not only extend beyond the traditional boundaries of individual projects but also involve different software artifacts. As a result, there is the need for a technology-independent representation of software dependency semantics and the ability to seamlessly integrate this representation with knowledge from other software artifacts. The Semantic Web and its supporting technology stack have been widely promoted to model, integrate, and support interoperability among heterogeneous data sources. This dissertation takes advantage of the Semantic Web and its enabling technology stack for knowledge modeling and integration. The thesis introduces five major contributions: (1) We present a formal Software Build System Ontology – SBSON, which captures concepts and properties for software build and dependency management systems. This formal knowledge representation allows us to take advantage of Semantic Web inference services forming the basis for a more flexibility API dependency analysis compared to traditional proprietary analysis approaches. (2) We conducted a user survey which involved 53 open source developers to allow us to gain insights on how actual developers manage API breaking changes. (3) We introduced a novel approach which integrates our SBSON model with knowledge about source code usage and changes within the Maven ecosystem to support API consumers and producers in managing (assessing and minimizing) the impacts of breaking changes. (4) A Security Vulnerability Analysis Framework (SV-AF) is introduced, which integrates builds system, source code, versioning system, and vulnerability ontologies to trace and assess the impact of security vulnerabilities across project boundaries. (5) Finally, we introduce an Ontological Trustworthiness Assessment Model (OntTAM). OntTAM is an integration of our build, source code, vulnerability and license ontologies which supports a holistic analysis and assessment of quality attributes related to the trustworthiness of libraries and APIs in open source systems. Several case studies are presented to illustrate the applicability and flexibility of our modelling approach, demonstrating that our knowledge modeling approach can seamlessly integrate and reuse knowledge extracted from existing build and dependency management systems with other existing heterogeneous data sources found in the software engineering domain. As part of our case studies, we also demonstrate how this unified knowledge model can enable new types of project dependency analysis

    Artificial cognitive architecture with self-learning and self-optimization capabilities. Case studies in micromachining processes

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura : 22-09-201
    • …
    corecore