10,431 research outputs found

    Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks

    Full text link
    Mobile ad hoc networks (MANETs) offer an excellent scenario for deploying communication applications because of the connectivity and versatility of this kind of networks. In contrast, the topology is usually extremely dynamic causing high rate of packet loss, so that ensuring a specific Quality of Service (QoS) for real-time video services becomes a hard challenge. In this paper, we evaluate the effect of using Multiple Description Coding (MDC) and Forward Error Correction (FEC) techniques for improving video quality in a multimedia content distribution system. A hybrid architecture using fixed and wireless ad hoc networks is proposed, which enables the use of multipoint-to-point transmission. MDC and FEC mechanisms can be combined with multipath transmission to increase the network efficiency and recover lost packets, improving the overall Quality of Experience (QoE) of the receiver. Simulations have been analyzed paying attention to objective parameters (Peak Signal to Noise Ratio, Packet Delivery Ratio, Decodable Frame Rate and interruptions) and subjective parameters. Results show that MDC increases the probability of packet delivery and FEC is able to recover lost frames and reduce video interruptions in moderate mobility scenarios, resulting in the improvement of video quality and the final user experience.This work was supported by project MIQUEL (TEC2007- 68119-C02-01/TCM) of the Spanish Ministry of Education and Science. The authors would like to thank the Editor and the reviewers for helpful suggestions to improve the quality of this paper.Acelas Delgado, P.; Arce Vila, P.; Guerri Cebollada, JC.; Castellanos Hernández, WE. (2014). Evaluation of the MDC and FEC over the quality of service and quality of experience for video distribution in ad hoc networks. Multimedia Tools and Applications. 68(3):969-989. https://doi.org/10.1007/s11042-012-1111-3969989683Apostolopoulos JG, Wong T, Tan W, Wee SJ (2002) On multiple description streaming with content delivery networks. IEEE INFOCOMBoukerche A (2009) Algorithms and protocols for wireless and mobile ad hoc networks. John Wiley & Sons IncChow CO, Ishii H (2007) Enhancing real-time video streaming over mobile ad hoc networks using multipoint-to-point communication. Comput Commun 30:1754–1764Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR), RFC 3626Corrie B et al (2003) Towards quality of experience in advanced collaborative environments. Third Annual Workshop on Advanced Collaborative EnvironmentsGabrielyan E, Hersch R (2006) Reliable multi-path routing schemes for real-time streaming. International Conference on Digital Telecommunications, pp 65–65Gandikota VR, Tamma BR, Murthy CSR (2008) Adaptive-FEC based packet loss resilience scheme for supporting voice communication over adhoc wireless networks. IEEE Trans Mobile Comput 7:1184–1199Gharavi H (2008) Multi-channel for multihop communication links. International Conference on Telecommunications, pp 1–6Grega M, Janowski L, Leszczuk M, Romaniak P, Papir Z (2008) Quality of experience evaluation for multimedia services. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne 4:142–153Hsieh MY, Huang YM, Chian TC (2007) Transmission of layered video streaming via multi-path on ad hoc networks. Multimed Tool Appl 34:155–177ITU—International Telecommunication Union (2007) Definition of quality of experience (QoE)”, Reference: TD 109rev2 (PLEN/12)ITU-R Recommendation BT.500-12 (2009) Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union, GenevaITU-T Recommendation P.910 (2000) Subjective video quality assessment methods for multimedia applications. International Telecommunication Union, GenevaKao KL, Ke ChH, Shieh CH (2006) An advanced simulation tool-set for video transmission performance evaluation. IEEE Region 10 Conference, pp 1–40Ke CH et al (2006) A novel realistic simulation tool for video transmission over wireless network. Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trsutworthy ComputingKeisuke U, Cheeonn C, Hiroshi I (2008) A study on video performance of multipoint-to-point video streaming with multiple description coding over ad hoc networks. EEJ Trans Electron, Inf Syst 128:1431–1437Kilkki K (2008) Quality of experience in communications ecosystem. J Univers Comput Sci 14:615–624Li A (2007) RTP payload format for generic forward error correction. RFC 5109, Dec. 2007Li J, Blake C, Couto DD, Lee H, Morris R (2001) Capacity of ad hoc wireless networks. 7th Annual International Conference on Mobile Computing and Networking, pp 16–21Liao Y, Gibson JD (2011) Routing-aware multiple description video coding over mobile ad-hoc networks. IEEE Trans Multimed 13:132–142Lindeberg M, Kristiansen S, Plagemann T, Goebel V (2011) Challenges and techniques for video streaming over mobile ad hoc networks. Multimed Syst 17:51–82Mao S et al (2003) Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J Sel Area Comm 21:1721–1737Ni P (2009) Towards Optimal Quality of Experience Via Scalable Video Coding. Mälardalen University Press Licentiate Theses, SwedenPinson MH, Wolf S (2004) A new standardized method for objectively measuring video quality. IEEE Trans Broadcast 50:312–322Rong B, Qian Y, Lu K, Hu RQ, Kadoch M (2010) Multipath routing over wireless mesh networks for multiple description video transmission. IEEE J Sel Area Comm 28:321–331Schierl T, Ganger K, Hellge C, Wiegand T, Stockhammer T (2006) SVC-based multisource streaming for robust video trans- mission in mobile ad hoc networks. IEEE Wireless Comm 13:96–103Schierl T, Stockhammer T, Wiegand T (2007) Mobile video transmission using scalable video coding. IEEE Trans Circ Syst Video Tech 17:1204–1217Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans Circ Syst Video Tech 17:1103–1120VQEG (2008) Video quality experts group. Available online: http://www.vqeg.orgWang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612Wei W, Zakhor A (2004) Robust multipath source routing protocol (RMPSR) for video communication over wireless ad hoc net- works. Proceedings of IEEE International Conference on Multimedia and Expo 2:1379–1382Winkler S, Mohandas P (2008) The evolution of video quality measurement: from PSNR to hybrid metrics. IEEE Trans Broadcast 54:660–668Xunqi Y, Modestino JW, Bajic IV (2005) Performance analysis of the efficacy of packet-level FEC in improving video transport over networks. IEEE International Conference on Image Processing 2:177–180Zink M, Schmitt J, Steinmetz R (2005) Layer-encoded video in scalable adaptive streaming. IEEE Trans Multimed 7:75–8

    High Quality of Service on Video Streaming in P2P Networks using FST-MDC

    Full text link
    Video streaming applications have newly attracted a large number of participants in a distribution network. Traditional client-server based video streaming solutions sustain precious bandwidth provision rate on the server. Recently, several P2P streaming systems have been organized to provide on-demand and live video streaming services on the wireless network at reduced server cost. Peer-to-Peer (P2P) computing is a new pattern to construct disseminated network applications. Typical error control techniques are not very well matched and on the other hand error prone channels has increased greatly for video transmission e.g., over wireless networks and IP. These two facts united together provided the essential motivation for the development of a new set of techniques (error concealment) capable of dealing with transmission errors in video systems. In this paper, we propose an flexible multiple description coding method named as Flexible Spatial-Temporal (FST) which improves error resilience in the sense of frame loss possibilities over independent paths. It introduces combination of both spatial and temporal concealment technique at the receiver and to conceal the lost frames more effectively. Experimental results show that, proposed approach attains reasonable quality of video performance over P2P wireless network.Comment: 11 pages, 8 figures, journa

    Hybrid FLUTE/DASH video delivery over mobile wireless networks

    Full text link
    This paper describes how FLUTE (File Delivery over Unidirectional Transport) and DASH (Dynamic Adaptive Streaming over HTTP) can be used to provide mobile video streaming services over broadcast wireless networks. FLUTE is a multicast protocol for multimedia file download. In this proposal, the protocol is adapted to provide video streaming services in crowded environments. Thus, video is delivered over a single connection to all viewers, reducing the traffic in the network. FLUTE incorporates an AL-FEC (Application Layered Forward Error Correction) mechanism in order to improve the reliability of the broadcast communication channel. For streaming applications, AL-FEC improves the relationship between the PSNR (Peak Signal-to-Noise Ratio) of the received video and the bandwidth allocated to the broadcast connection. The AL-FEC hereby presented applies simple unequal error protection schemes to favor the download of key frames. Furthermore, the proposal is based on the same video segmentation mechanism as DASH and therefore, clients can connect to a DASH repository to repair errors in the segments. This paper shows that FLUTE and DASH can be seamlessly integrated into a hybrid broadcast/unicast streaming technology, providing flexibility to trade off PSNR and bandwidth depending on the conditions of the mobile network.This work was supported by the 11012 ICARE (Innovative Cloud Architecture for Real Entertainment) project within the ITEA 2 Call 6 Program of the European Union.Belda Ortega, R.; De Fez Lava, I.; Fraile Gil, F.; Arce Vila, P.; Guerri Cebollada, JC. (2014). Hybrid FLUTE/DASH video delivery over mobile wireless networks. Transactions on Emerging Telecommunications Technologies. 25(11):1070-1082. doi:10.1002/ett.2804S107010822511ETSI TS 126 346 v11.3.0. Universal Mobile Telecommunications Systems (UMTS); LTE; Multimedia Broadcast/Multicast Service (MBMS); Protocols and Codecs 2013Lecompte, D., & Gabin, F. (2012). Evolved multimedia broadcast/multicast service (eMBMS) in LTE-advanced: overview and Rel-11 enhancements. IEEE Communications Magazine, 50(11), 68-74. doi:10.1109/mcom.2012.6353684Stockhammer T Luby MG DASH in mobile networks and services. Presented at IEEE Visual Communications and Image Processing (VCIP) , 2012Seeling, P., & Reisslein, M. (2012). Video Transport Evaluation With H.264 Video Traces. IEEE Communications Surveys & Tutorials, 14(4), 1142-1165. doi:10.1109/surv.2011.082911.00067Zhao, S., Tuninetti, D., Ansari, R., & Schonfeld, D. (2012). Multiple description coding over multiple correlated erasure channels. Transactions on Emerging Telecommunications Technologies, 23(6), 522-536. doi:10.1002/ett.2507Lin, C.-H., Wang, Y.-C., Shieh, C.-K., & Hwang, W.-S. (2012). An unequal error protection mechanism for video streaming over IEEE 802.11e WLANs. Computer Networks, 56(11), 2590-2599. doi:10.1016/j.comnet.2012.04.004Paila T Walsh R Luby M Roca V Lehtonen R FLUTE - file delivery over unidirectional transport. 2012Luby M Watson M Vicisano L Asynchronous layered coding (ALC) protocol instantiation. 2010Ameigeiras, P., Ramos-Munoz, J. J., Navarro-Ortiz, J., & Lopez-Soler, J. M. (2012). Analysis and modelling of YouTube traffic. Transactions on Emerging Telecommunications Technologies, 23(4), 360-377. doi:10.1002/ett.2546ISO/IEC 23009-1. Dynamic adaptive streaming over HTTP (DASH) - Part 1: media presentation description and segment formats 2012De Fez, I., Fraile, F., Belda, R., & Guerri, J. C. (2012). Analysis and Evaluation of Adaptive LDPC AL-FEC Codes for Content Download Services. IEEE Transactions on Multimedia, 14(3), 641-650. doi:10.1109/tmm.2012.2190392Jenkac, H., Stockhammer, T., & Wen Xu. (2006). Asynchronous and reliable on-demand media broadcast. IEEE Network, 20(2), 14-20. doi:10.1109/mnet.2006.1607891Neumann C Roca V Scalable video streaming over ALC (SVSoA): a solution for the large scale multicast distribution of videos. Presented at 1st Int. Workshop on SMDI , 2004Lederer S MĂźller C Timmerer C Dynamic adaptive streaming over HTTP dataset Proc. of the ACM Conference on Multimedia Systems (MMSys) 2012 89 94Blender Foundation webpage http://www.blender.org/blenderorg/Bai, H., & Atiquzzaman, M. (2003). Error modeling schemes for fading channels in wireless communications: A survey. IEEE Communications Surveys & Tutorials, 5(2), 2-9. doi:10.1109/comst.2003.5341334Ohm, J.-R. (2004). Multimedia Communication Technology. Signals and Communication Technology. doi:10.1007/978-3-642-18750-

    Robust video coder solution for wireless streaming: applications in Gaussian channels

    Get PDF
    With the technological progress in wireless communications seen in the past decade, the miniaturization of personal computers was imminent. Due to the limited availability of resources in these small devices, it has been preferable to stream the media over widely deployed networks like the Internet. However, the conventional protocols used in physical and data-link layers are not adequate for reliable video streaming over noisy wireless channels. There are several popular and well-studied mechanisms for addressing this problem, one of them being Multiple-Description-Coding. However, proposed solutions are too specialized, focusing the coding of either motion or spatial information; thus failing to address the whole problem, that is - the robust video coding. In this thesis a novel MDC video coder is presented, which was developed during an internship at the I3S laboratory - France. The full coding scheme is capable of robust transmission of Motion-Vectors and wavelet-subband information over noisy wireless channels. The former is accomplished by using a MAP-based MD-decoding algorithm available in literature, while the robust transmission of wavelet-subbands is achieved using a state-of-the-art registry-based JPEG-2000 MDC. In order to e ciently balance MV information between multiple descriptions, a novel R/D-optimizing MD bitallocation scheme is presented. As it is also important to e ciently distribute bits between subband and motion information, a global subband/motion-vector bit-allocation technique found in literature was adopted and improved. Indeed, this thesis would not be complete without the presentation of produced streams as well as of a set of backing scienti c results

    Wireless Video Transmission with Over-the-Air Packet Mixing

    Full text link
    In this paper, we propose a system for wireless video transmission with a wireless physical layer (PHY) that supports cooperative forwarding of interfered/superimposed packets. Our system model considers multiple and independent unicast transmissions between network nodes while a number of them serve as relays of the interfered/superimposed signals. For this new PHY the average transmission rate that each node can achieve is estimated first. Next, we formulate a utility optimization framework for the video transmission problem and we show that it can be simplified due to the features of the new PHY. Simulation results reveal the system operating regions for which superimposing wireless packets is a better choice than a typical cooperative PHY.Comment: 2012 Packet Video Worksho
    • …
    corecore