6,135 research outputs found

    An interior point algorithm for minimum sum-of-squares clustering

    Get PDF
    Copyright @ 2000 SIAM PublicationsAn exact algorithm is proposed for minimum sum-of-squares nonhierarchical clustering, i.e., for partitioning a given set of points from a Euclidean m-space into a given number of clusters in order to minimize the sum of squared distances from all points to the centroid of the cluster to which they belong. This problem is expressed as a constrained hyperbolic program in 0-1 variables. The resolution method combines an interior point algorithm, i.e., a weighted analytic center column generation method, with branch-and-bound. The auxiliary problem of determining the entering column (i.e., the oracle) is an unconstrained hyperbolic program in 0-1 variables with a quadratic numerator and linear denominator. It is solved through a sequence of unconstrained quadratic programs in 0-1 variables. To accelerate resolution, variable neighborhood search heuristics are used both to get a good initial solution and to solve quickly the auxiliary problem as long as global optimality is not reached. Estimated bounds for the dual variables are deduced from the heuristic solution and used in the resolution process as a trust region. Proved minimum sum-of-squares partitions are determined for the rst time for several fairly large data sets from the literature, including Fisher's 150 iris.This research was supported by the Fonds National de la Recherche Scientifique Suisse, NSERC-Canada, and FCAR-Quebec

    ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear multicommodity flow problems

    Get PDF
    This paper proposes an implementation of a constrained analytic center cutting plane method to solve nonlinear multicommodity flow problems. The new approach exploits the property that the objective of the Lagrangian dual problem has a smooth component with second order derivatives readily available in closed form. The cutting planes issued from the nonsmooth component and the epigraph set of the smooth component form a localization set that is endowed with a self-concordant augmented barrier. Our implementation uses an approximate analytic center associated with that barrier to query the oracle of the nonsmooth component. The paper also proposes an approximation scheme for the original objective. An active set strategy can be applied to the transformed problem: it reduces the dimension of the dual space and accelerates computations. The new approach solves huge instances with high accuracy. The method is compared to alternative approaches proposed in the literatur

    Volumetric center method for stochastic convex programs using sampling

    Get PDF
    We develop an algorithm for solving the stochastic convex program (SCP) by combining Vaidya's volumetric center interior point method (VCM) for solving non-smooth convex programming problems with the Monte-Carlo sampling technique to compute a subgradient. A near-central cut variant of VCM is developed, and for this method an approach to perform bulk cut translation, and adding multiple cuts is given. We show that by using near-central VCM the SCP can be solved to a desirable accuracy with any given probability. For the two-stage SCP the solution time is independent of the number of scenarios

    A Copositive Framework for Analysis of Hybrid Ising-Classical Algorithms

    Full text link
    Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing approaches ranging from direct transcription to hybrid quantum-classical approaches rooted in existing optimization algorithms. While it is widely acknowledged that quantum computers should augment classical computers, rather than replace them entirely, comparatively little attention has been directed toward deriving analytical characterizations of their interactions. In this paper, we present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs (MBQP) via Ising solvers. We show the exactness of a convex copositive reformulation of MBQPs, allowing the resulting reformulation to inherit the straightforward analysis of convex optimization. We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm. Using existing complexity results for convex cutting-plane algorithms, we deduce that the classical portion of this hybrid framework is guaranteed to be polynomial time. This suggests that when applied to NP-hard problems, the complexity of the solution is shifted onto the subroutine handled by the Ising solver

    On-Shell Methods in Perturbative QCD

    Full text link
    We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider.Comment: 49 pages, 15 figures. v2: minor typos correcte

    Statistical Physics of Fracture Surfaces Morphology

    Full text link
    Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, succeeding to reproduce the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up with the proposition of new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.Comment: A review paper submitted to J. Stat. Phy

    Transmitted sound field due to an impulsive line acoustic source bounded by a plate followed by a vortex sheet

    Get PDF
    The propagation of sound due to a line acoustic source in the moving stream across a semiinfinite vortex sheet which trails from a rigid plate is examined in a linear theory for the subsonic case. A solution for the transmitted sound field is obtained with the aid of multiple integral transforms and the Wiener-Hopf technique for both the steady state (time harmonic) and initial value (impulsive source) situations. The contour of inverse transform and hence the decomposition of the functions are determined through causality and radiation conditions. The solution obtained satisfies causality and the full Kutta conditions. The transmitted sound field is composed of two waves in both the stady state and initial value problems. One is the wave scattered from the edge of the plate which is associated with the bow wave and the instability wave. These waves exist in the downstream sectors. The other is the wave transmitted through the vortex sheet which is also associated with the instability wave. Regional divisions of the transmitted sound field are identified

    Homaloidal hypersurfaces and hypersurfaces with vanishing Hessian

    Get PDF
    We prove the existence of various families of irreducible homaloidal hypersurfaces in projective space Pr\mathbb P^ r, for all r≥3r\geq 3. Some of these are families of homaloidal hypersurfaces whose degrees are arbitrarily large as compared to the dimension of the ambient projective space. The existence of such a family solves a question that has naturally arisen from the consideration of the classes of homaloidal hypersurfaces known so far. The result relies on a fine analysis of dual hypersurfaces to certain scroll surfaces. We also introduce an infinite family of determinantal homaloidal hypersurfaces based on a certain degeneration of a generic Hankel matrix. These examples fit non--classical versions of de Jonqui\`eres transformations. As a natural counterpoint, we broaden up aspects of the theory of Gordan--Noether hypersurfaces with vanishing Hessian determinant, bringing over some more precision to the present knowledge.Comment: 56 pages. Some material added in section 1; minor changes. Final version to appear in Advances in Mathematic
    • …
    corecore