1,655 research outputs found

    Multiple Congruence Relations, First-Order Theories on Terms, and the Frames of the Applied Pi-Calculus

    Get PDF
    International audienceWe investigate the problem of deciding first-order theories of finite trees with several distinguished congruence relations, each of them given by some equational axioms. We give an automata-based solution for the case where the different equational axiom systems are linear and variable-disjoint (this includes the case where all axioms are ground), and where the logic does not permit to express tree relations x=f(y,z). We show that the problem is undecidable when these restrictions are relaxed. As motivation and application, we show how to translate the model-checking problem of Apil, a spatial equational logic for the applied pi-calculus, to the validity of first-order formulas in term algebras with multiple congruence relations

    Psi-calculi in Isabelle

    Get PDF

    Psi-calculi: a framework for mobile processes with nominal data and logic

    Get PDF
    The framework of psi-calculi extends the pi-calculus with nominal datatypes for data structures and for logical assertions and conditions. These can be transmitted between processes and their names can be statically scoped as in the standard pi-calculus. Psi-calculi can capture the same phenomena as other proposed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the fusion calculus, the concurrent constraint pi-calculus, and calculi with polyadic communication channels or pattern matching. Psi-calculi can be even more general, for example by allowing structured channels, higher-order formalisms such as the lambda calculus for data structures, and predicate logic for assertions. We provide ample comparisons to related calculi and discuss a few significant applications. Our labelled operational semantics and definition of bisimulation is straightforward, without a structural congruence. We establish minimal requirements on the nominal data and logic in order to prove general algebraic properties of psi-calculi, all of which have been checked in the interactive theorem prover Isabelle. Expressiveness of psi-calculi significantly exceeds that of other formalisms, while the purity of the semantics is on par with the original pi-calculus.Comment: 44 page

    Non-classical modal logic for belief

    Get PDF

    Matching Logic

    Full text link
    This paper presents matching logic, a first-order logic (FOL) variant for specifying and reasoning about structure by means of patterns and pattern matching. Its sentences, the patterns, are constructed using variables, symbols, connectives and quantifiers, but no difference is made between function and predicate symbols. In models, a pattern evaluates into a power-set domain (the set of values that match it), in contrast to FOL where functions and predicates map into a regular domain. Matching logic uniformly generalizes several logical frameworks important for program analysis, such as: propositional logic, algebraic specification, FOL with equality, modal logic, and separation logic. Patterns can specify separation requirements at any level in any program configuration, not only in the heaps or stores, without any special logical constructs for that: the very nature of pattern matching is that if two structures are matched as part of a pattern, then they can only be spatially separated. Like FOL, matching logic can also be translated into pure predicate logic with equality, at the same time admitting its own sound and complete proof system. A practical aspect of matching logic is that FOL reasoning with equality remains sound, so off-the-shelf provers and SMT solvers can be used for matching logic reasoning. Matching logic is particularly well-suited for reasoning about programs in programming languages that have an operational semantics, but it is not limited to this

    The calculus of multivectors on noncommutative jet spaces

    Get PDF
    The Leibniz rule for derivations is invariant under cyclic permutations of co-multiples within the arguments of derivations. We explore the implications of this principle: in effect, we construct a class of noncommutative bundles in which the sheaves of algebras of walks along a tesselated affine manifold form the base, whereas the fibres are free associative algebras or, at a later stage, such algebras quotients over the linear relation of equivalence under cyclic shifts. The calculus of variations is developed on the infinite jet spaces over such noncommutative bundles. In the frames of such field-theoretic extension of the Kontsevich formal noncommutative symplectic (super)geometry, we prove the main properties of the Batalin--Vilkovisky Laplacian and Schouten bracket. We show as by-product that the structures which arise in the classical variational Poisson geometry of infinite-dimensional integrable systems do actually not refer to the graded commutativity assumption.Comment: Talks given at Mathematics seminar (IHES, 25.11.2016) and Oberseminar (MPIM Bonn, 2.02.2017), 23 figures, 60 page
    corecore