190,703 research outputs found

    Multiple Component Learning for Object Detection

    Get PDF
    Object detection is one of the key problems in computer vision. In the last decade, discriminative learning approaches have proven effective in detecting rigid objects, achieving very low false positives rates. The field has also seen a resurgence of part-based recognition methods, with impressive results on highly articulated, diverse object categories. In this paper we propose a discriminative learning approach for detection that is inspired by part-based recognition approaches. Our method, Multiple Component Learning (MCL), automatically learns individual component classifiers and combines these into an overall classifier. Unlike previous methods, which rely on either fairly restricted part models or labeled part data, MCL learns powerful component classifiers in a weakly supervised manner, where object labels are provided but part labels are not. The basis Of MCL lies in learning a set classifier; we achieve this by combining boosting with weakly supervised learning, specifically the Multiple Instance Learning framework (MIL). MCL is general, and we demonstrate results on a range of data from computer audition and computer vision. In particular, MCL outperforms all existing methods on the challenging INRIA pedestrian detection dataset, and unlike methods that are not part-based, MCL is quite robust to occlusions

    A Multiple Component Matching Framework for Person Re-Identification

    Full text link
    Person re-identification consists in recognizing an individual that has already been observed over a network of cameras. It is a novel and challenging research topic in computer vision, for which no reference framework exists yet. Despite this, previous works share similar representations of human body based on part decomposition and the implicit concept of multiple instances. Building on these similarities, we propose a Multiple Component Matching (MCM) framework for the person re-identification problem, which is inspired by Multiple Component Learning, a framework recently proposed for object detection. We show that previous techniques for person re-identification can be considered particular implementations of our MCM framework. We then present a novel person re-identification technique as a direct, simple implementation of our framework, focused in particular on robustness to varying lighting conditions, and show that it can attain state of the art performances.Comment: Accepted paper, 16th Int. Conf. on Image Analysis and Processing (ICIAP 2011), Ravenna, Italy, 14/09/201

    Visual Concept Detection in Images and Videos

    Get PDF
    The rapidly increasing proliferation of digital images and videos leads to a situation where content-based search in multimedia databases becomes more and more important. A prerequisite for effective image and video search is to analyze and index media content automatically. Current approaches in the field of image and video retrieval focus on semantic concepts serving as an intermediate description to bridge the “semantic gap” between the data representation and the human interpretation. Due to the large complexity and variability in the appearance of visual concepts, the detection of arbitrary concepts represents a very challenging task. In this thesis, the following aspects of visual concept detection systems are addressed: First, enhanced local descriptors for mid-level feature coding are presented. Based on the observation that scale-invariant feature transform (SIFT) descriptors with different spatial extents yield large performance differences, a novel concept detection system is proposed that combines feature representations for different spatial extents using multiple kernel learning (MKL). A multi-modal video concept detection system is presented that relies on Bag-of-Words representations for visual and in particular for audio features. Furthermore, a method for the SIFT-based integration of color information, called color moment SIFT, is introduced. Comparative experimental results demonstrate the superior performance of the proposed systems on the Mediamill and on the VOC Challenge. Second, an approach is presented that systematically utilizes results of object detectors. Novel object-based features are generated based on object detection results using different pooling strategies. For videos, detection results are assembled to object sequences and a shot-based confidence score as well as further features, such as position, frame coverage or movement, are computed for each object class. These features are used as additional input for the support vector machine (SVM)-based concept classifiers. Thus, other related concepts can also profit from object-based features. Extensive experiments on the Mediamill, VOC and TRECVid Challenge show significant improvements in terms of retrieval performance not only for the object classes, but also in particular for a large number of indirectly related concepts. Moreover, it has been demonstrated that a few object-based features are beneficial for a large number of concept classes. On the VOC Challenge, the additional use of object-based features led to a superior performance for the image classification task of 63.8% mean average precision (AP). Furthermore, the generalization capabilities of concept models are investigated. It is shown that different source and target domains lead to a severe loss in concept detection performance. In these cross-domain settings, object-based features achieve a significant performance improvement. Since it is inefficient to run a large number of single-class object detectors, it is additionally demonstrated how a concurrent multi-class object detection system can be constructed to speed up the detection of many object classes in images. Third, a novel, purely web-supervised learning approach for modeling heterogeneous concept classes in images is proposed. Tags and annotations of multimedia data in the WWW are rich sources of information that can be employed for learning visual concepts. The presented approach is aimed at continuous long-term learning of appearance models and improving these models periodically. For this purpose, several components have been developed: a crawling component, a multi-modal clustering component for spam detection and subclass identification, a novel learning component, called “random savanna”, a validation component, an updating component, and a scalability manager. Only a single word describing the visual concept is required to initiate the learning process. Experimental results demonstrate the capabilities of the individual components. Finally, a generic concept detection system is applied to support interdisciplinary research efforts in the field of psychology and media science. The psychological research question addressed in the field of behavioral sciences is, whether and how playing violent content in computer games may induce aggression. Therefore, novel semantic concepts most notably “violence” are detected in computer game videos to gain insights into the interrelationship of violent game events and the brain activity of a player. Experimental results demonstrate the excellent performance of the proposed automatic concept detection approach for such interdisciplinary research

    Multi-domain document layout understanding using few-shot object detection

    Get PDF
    We try to address the problem of document layout understanding using a simple algorithm which generalizes across multiple domains while training on just few examples per domain. We approach this problem via supervised object detection method and propose a methodology to overcome the requirement of large datasets. We use the concept of transfer learning by pre-training our object detector on a simple artificial (source) dataset and fine-tuning it on a tiny domain specific (target) dataset. We show that this methodology works for multiple domains with training samples as less as 10 documents. We demonstrate the effect of each component of the methodology in the end result and show the superiority of this methodology over simple object detectors. We will open-source the code, trained models, source and target datasets upon acceptance

    A Deep Learning-based approach for Fault Detection of Power Lines

    Get PDF
    Master's thesis in Information- and communication technology (IKT590)A transmission network is the most crucial part of modern infrastructure. However, it requires an extensive amount of power line inspection each year to maintain, and with an increased interest in replacing large helicopters with drones for this process, the possibility of including AI is equally compelling. This thesis goes into the second part by taking a deep learning-based approach in the interest of fault detection. A literature review illustrates that earlier research has some to none understanding of the complexity re-quired for inspection. Due to the advancement in object detection and classification, this thesis has identified and implemented an applicable model capable of giving state-of-the-art accuracy in electrical pole and component detection by dividing the process into multiple layers. This thesis takes as well and proposes a new method that presented great result in assuring more reliable fault detection and is a way to improve the quality of images taken by drones. The pole detection layer gave 97.7 mAP, the component detection layer reached 95.6mAP, the fault classifier delivered an accuracy of 93%, and the proposed quality classifier had an accuracy of 93% as well. The presented approach illustrates the possibility of phasing the physical inspection out. The amount of component labeled that must be available for algorithmic training to surpass a human expert is not readily available. Nevertheless, the presented approach is a sufficient tool for assisting the inspector

    Deep Learning with Passive Optical Nonlinear Mapping

    Full text link
    Deep learning has fundamentally transformed artificial intelligence, but the ever-increasing complexity in deep learning models calls for specialized hardware accelerators. Optical accelerators can potentially offer enhanced performance, scalability, and energy efficiency. However, achieving nonlinear mapping, a critical component of neural networks, remains challenging optically. Here, we introduce a design that leverages multiple scattering in a reverberating cavity to passively induce optical nonlinear random mapping, without the need for additional laser power. A key advantage emerging from our work is that we show we can perform optical data compression, facilitated by multiple scattering in the cavity, to efficiently compress and retain vital information while also decreasing data dimensionality. This allows rapid optical information processing and generation of low dimensional mixtures of highly nonlinear features. These are particularly useful for applications demanding high-speed analysis and responses such as in edge computing devices. Utilizing rapid optical information processing capabilities, our optical platforms could potentially offer more efficient and real-time processing solutions for a broad range of applications. We demonstrate the efficacy of our design in improving computational performance across tasks, including classification, image reconstruction, key-point detection, and object detection, all achieved through optical data compression combined with a digital decoder. Notably, we observed high performance, at an extreme compression ratio, for real-time pedestrian detection. Our findings pave the way for novel algorithms and architectural designs for optical computing.Comment: 16 pages, 7 figure
    corecore