58,241 research outputs found

    Improving the Interpretability of Classification Rules Discovered by an Ant Colony Algorithm: Extended Results

    Get PDF
    The vast majority of Ant Colony Optimization (ACO) algorithms for inducing classification rules use an ACO-based procedure to create a rule in an one-at-a-time fashion. An improved search strategy has been proposed in the cAnt-MinerPB algorithm, where an ACO-based procedure is used to create a complete list of rules (ordered rules)-i.e., the ACO search is guided by the quality of a list of rules, instead of an individual rule. In this paper we propose an extension of the cAnt-MinerPB algorithm to discover a set of rules (unordered rules). The main motivations for this work are to improve the interpretation of individual rules by discovering a set of rules and to evaluate the impact on the predictive accuracy of the algorithm. We also propose a new measure to evaluate the interpretability of the discovered rules to mitigate the fact that the commonly-used model size measure ignores how the rules are used to make a class prediction. Comparisons with state-of-the-art rule induction algorithms, support vector machines and the cAnt-MinerPB producing ordered rules are also presented

    Learning Multi-Tree Classification Models with Ant Colony Optimization

    Get PDF
    Ant Colony Optimization (ACO) is a meta-heuristic for solving combinatorial optimization problems, inspired by the behaviour of biological ant colonies. One of the successful applications of ACO is learning classification models (classifiers). A classifier encodes the relationships between the input attribute values and the values of a class attribute in a given set of labelled cases and it can be used to predict the class value of new unlabelled cases. Decision trees have been widely used as a type of classification model that represent comprehensible knowledge to the user. In this paper, we propose the use of ACO-based algorithms for learning an extended multi-tree classification model, which consists of multiple decision trees, one for each class value. Each class-based decision trees is responsible for discriminating between its class value and all other values available in the class domain. Our proposed algorithms are empirically evaluated against well-known decision trees induction algorithms, as well as the ACO-based Ant-Tree-Miner algorithm. The results show an overall improvement in predictive accuracy over 32 benchmark datasets. We also discuss how the new multi-tree models can provide the user with more understanding and knowledge-interpretability in a given domain

    Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning

    Full text link
    This paper describes an experimental comparison of seven different learning algorithms on the problem of learning to disambiguate the meaning of a word from context. The algorithms tested include statistical, neural-network, decision-tree, rule-based, and case-based classification techniques. The specific problem tested involves disambiguating six senses of the word ``line'' using the words in the current and proceeding sentence as context. The statistical and neural-network methods perform the best on this particular problem and we discuss a potential reason for this observed difference. We also discuss the role of bias in machine learning and its importance in explaining performance differences observed on specific problems.Comment: 10 page

    TSE-IDS: A Two-Stage Classifier Ensemble for Intelligent Anomaly-based Intrusion Detection System

    Get PDF
    Intrusion detection systems (IDS) play a pivotal role in computer security by discovering and repealing malicious activities in computer networks. Anomaly-based IDS, in particular, rely on classification models trained using historical data to discover such malicious activities. In this paper, an improved IDS based on hybrid feature selection and two-level classifier ensembles is proposed. An hybrid feature selection technique comprising three methods, i.e. particle swarm optimization, ant colony algorithm, and genetic algorithm, is utilized to reduce the feature size of the training datasets (NSL-KDD and UNSW-NB15 are considered in this paper). Features are selected based on the classification performance of a reduced error pruning tree (REPT) classifier. Then, a two-level classifier ensembles based on two meta learners, i.e., rotation forest and bagging, is proposed. On the NSL-KDD dataset, the proposed classifier shows 85.8% accuracy, 86.8% sensitivity, and 88.0% detection rate, which remarkably outperform other classification techniques recently proposed in the literature. Results regarding the UNSW-NB15 dataset also improve the ones achieved by several state of the art techniques. Finally, to verify the results, a two-step statistical significance test is conducted. This is not usually considered by IDS research thus far and, therefore, adds value to the experimental results achieved by the proposed classifier

    A new sequential covering strategy for inducing classification rules with ant colony algorithms

    Get PDF
    Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms
    corecore