43,206 research outputs found

    Hyperbox based machine learning algorithms: A comprehensive survey

    Full text link
    With the rapid development of digital information, the data volume generated by humans and machines is growing exponentially. Along with this trend, machine learning algorithms have been formed and evolved continuously to discover new information and knowledge from different data sources. Learning algorithms using hyperboxes as fundamental representational and building blocks are a branch of machine learning methods. These algorithms have enormous potential for high scalability and online adaptation of predictors built using hyperbox data representations to the dynamically changing environments and streaming data. This paper aims to give a comprehensive survey of literature on hyperbox-based machine learning models. In general, according to the architecture and characteristic features of the resulting models, the existing hyperbox-based learning algorithms may be grouped into three major categories: fuzzy min-max neural networks, hyperbox-based hybrid models, and other algorithms based on hyperbox representations. Within each of these groups, this paper shows a brief description of the structure of models, associated learning algorithms, and an analysis of their advantages and drawbacks. Main applications of these hyperbox-based models to the real-world problems are also described in this paper. Finally, we discuss some open problems and identify potential future research directions in this field.Comment: 7 figure

    Single neuron-based neural networks are as efficient as dense deep neural networks in binary and multi-class recognition problems

    Full text link
    Recent advances in neuroscience have revealed many principles about neural processing. In particular, many biological systems were found to reconfigure/recruit single neurons to generate multiple kinds of decisions. Such findings have the potential to advance our understanding of the design and optimization process of artificial neural networks. Previous work demonstrated that dense neural networks are needed to shape complex decision surfaces required for AI-level recognition tasks. We investigate the ability to model high dimensional recognition problems using single or several neurons networks that are relatively easier to train. By employing three datasets, we test the use of a population of single neuron networks in performing multi-class recognition tasks. Surprisingly, we find that sparse networks can be as efficient as dense networks in both binary and multi-class tasks. Moreover, single neuron networks demonstrate superior performance in binary classification scheme and competing results when combined for multi-class recognition

    A Survey of Semantic Segmentation

    Full text link
    This survey gives an overview over different techniques used for pixel-level semantic segmentation. Metrics and datasets for the evaluation of segmentation algorithms and traditional approaches for segmentation such as unsupervised methods, Decision Forests and SVMs are described and pointers to the relevant papers are given. Recently published approaches with convolutional neural networks are mentioned and typical problematic situations for segmentation algorithms are examined. A taxonomy of segmentation algorithms is given.Comment: Fixed typo in accuracy metrics formula; added value range of accuracy metrics; consistent naming of variable

    From BoW to CNN: Two Decades of Texture Representation for Texture Classification

    Full text link
    Texture is a fundamental characteristic of many types of images, and texture representation is one of the essential and challenging problems in computer vision and pattern recognition which has attracted extensive research attention. Since 2000, texture representations based on Bag of Words (BoW) and on Convolutional Neural Networks (CNNs) have been extensively studied with impressive performance. Given this period of remarkable evolution, this paper aims to present a comprehensive survey of advances in texture representation over the last two decades. More than 200 major publications are cited in this survey covering different aspects of the research, which includes (i) problem description; (ii) recent advances in the broad categories of BoW-based, CNN-based and attribute-based methods; and (iii) evaluation issues, specifically benchmark datasets and state of the art results. In retrospect of what has been achieved so far, the survey discusses open challenges and directions for future research.Comment: Accepted by IJC

    Transforming and Projecting Images into Class-conditional Generative Networks

    Full text link
    We present a method for projecting an input image into the space of a class-conditional generative neural network. We propose a method that optimizes for transformation to counteract the model biases in generative neural networks. Specifically, we demonstrate that one can solve for image translation, scale, and global color transformation, during the projection optimization to address the object-center bias and color bias of a Generative Adversarial Network. This projection process poses a difficult optimization problem, and purely gradient-based optimizations fail to find good solutions. We describe a hybrid optimization strategy that finds good projections by estimating transformations and class parameters. We show the effectiveness of our method on real images and further demonstrate how the corresponding projections lead to better editability of these images.Comment: Accepted to ECCV2020 (oral

    Automated Vision-based Bridge Component Extraction Using Multiscale Convolutional Neural Networks

    Full text link
    Image data has a great potential of helping post-earthquake visual inspections of civil engineering structures due to the ease of data acquisition and the advantages in capturing visual information. A variety of techniques have been applied to detect damages automatically from a close-up image of a structural component. However, the application of the automatic damage detection methods become increasingly difficult when the image includes multiple components from different structures. To reduce the inaccurate false positive alarms, critical structural components need to be recognized first, and the damage alarms need to be cleaned using the component recognition results. To achieve the goal, this study aims at recognizing and extracting bridge components from images of urban scenes. The bridge component recognition begins with pixel-wise classifications of an image into 10 scene classes. Then, the original image and the scene classification results are combined to classify the image pixels into five component classes. The multi-scale convolutional neural networks (multi-scale CNNs) are used to perform pixel-wise classification, and the classification results are post-processed by averaging within superpixels and smoothing by conditional random fields (CRFs). The performance of the bridge component extraction is tested in terms of accuracy and consistency

    End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks

    Full text link
    Recent years have seen a sharp increase in the number of related yet distinct advances in semantic segmentation. Here, we tackle this problem by leveraging the respective strengths of these advances. That is, we formulate a conditional random field over a four-connected graph as end-to-end trainable convolutional and recurrent networks, and estimate them via an adversarial process. Importantly, our model learns not only unary potentials but also pairwise potentials, while aggregating multi-scale contexts and controlling higher-order inconsistencies. We evaluate our model on two standard benchmark datasets for semantic face segmentation, achieving state-of-the-art results on both of them

    Multitask Painting Categorization by Deep Multibranch Neural Network

    Full text link
    In this work we propose a new deep multibranch neural network to solve the tasks of artist, style, and genre categorization in a multitask formulation. In order to gather clues from low-level texture details and, at the same time, exploit the coarse layout of the painting, the branches of the proposed networks are fed with crops at different resolutions. We propose and compare two different crop strategies: the first one is a random-crop strategy that permits to manage the tradeoff between accuracy and speed; the second one is a smart extractor based on Spatial Transformer Networks trained to extract the most representative subregions. Furthermore, inspired by the results obtained in other domains, we experiment the joint use of hand-crafted features directly computed on the input images along with neural ones. Experiments are performed on a new dataset originally sourced from wikiart.org and hosted by Kaggle, and made suitable for artist, style and genre multitask learning. The dataset here proposed, named MultitaskPainting100k, is composed by 100K paintings, 1508 artists, 125 styles and 41 genres. Our best method, tested on the MultitaskPainting100k dataset, achieves accuracy levels of 56.5%, 57.2%, and 63.6% on the tasks of artist, style and genre prediction respectively.Comment: 11 pages, under revie

    Automated Deep Photo Style Transfer

    Full text link
    Photorealism is a complex concept that cannot easily be formulated mathematically. Deep Photo Style Transfer is an attempt to transfer the style of a reference image to a content image while preserving its photorealism. This is achieved by introducing a constraint that prevents distortions in the content image and by applying the style transfer independently for semantically different parts of the images. In addition, an automated segmentation process is presented that consists of a neural network based segmentation method followed by a semantic grouping step. To further improve the results a measure for image aesthetics is used and elaborated. If the content and the style image are sufficiently similar, the result images look very realistic. With the automation of the image segmentation the pipeline becomes completely independent from any user interaction, which allows for new applications

    Medical Image Analysis using Convolutional Neural Networks: A Review

    Full text link
    The science of solving clinical problems by analyzing images generated in clinical practice is known as medical image analysis. The aim is to extract information in an effective and efficient manner for improved clinical diagnosis. The recent advances in the field of biomedical engineering has made medical image analysis one of the top research and development area. One of the reason for this advancement is the application of machine learning techniques for the analysis of medical images. Deep learning is successfully used as a tool for machine learning, where a neural network is capable of automatically learning features. This is in contrast to those methods where traditionally hand crafted features are used. The selection and calculation of these features is a challenging task. Among deep learning techniques, deep convolutional networks are actively used for the purpose of medical image analysis. This include application areas such as segmentation, abnormality detection, disease classification, computer aided diagnosis and retrieval. In this study, a comprehensive review of the current state-of-the-art in medical image analysis using deep convolutional networks is presented. The challenges and potential of these techniques are also highlighted
    • …
    corecore