8,617 research outputs found

    Reducing statistical time-series problems to binary classification

    Get PDF
    We show how binary classification methods developed to work on i.i.d. data can be used for solving statistical problems that are seemingly unrelated to classification and concern highly-dependent time series. Specifically, the problems of time-series clustering, homogeneity testing and the three-sample problem are addressed. The algorithms that we construct for solving these problems are based on a new metric between time-series distributions, which can be evaluated using binary classification methods. Universal consistency of the proposed algorithms is proven under most general assumptions. The theoretical results are illustrated with experiments on synthetic and real-world data.Comment: In proceedings of NIPS 2012, pp. 2069-207

    Rare event simulation for multiscale diffusions in random environments

    Full text link
    We consider systems of stochastic differential equations with multiple scales and small noise and assume that the coefficients of the equations are ergodic and stationary random fields. Our goal is to construct provably-efficient importance sampling Monte Carlo methods that allow efficient computation of rare event probabilities or expectations of functionals that can be associated with rare events. Standard Monte Carlo algorithms perform poorly in the small noise limit and hence fast simulations algorithms become relevant. The presence of multiple scales complicates the design and the analysis of efficient importance sampling schemes. An additional complication is the randomness of the environment. We construct explicit changes of measures that are proven to be logarithmic asymptotically efficient with probability one with respect to the random environment (i.e., in the quenched sense). Numerical simulations support the theoretical results.Comment: Final version, paper to appear in SIAM Journal Multiscale Modelling and Simulatio
    corecore