133 research outputs found

    Control Barrier Function Based Quadratic Programs for Safety Critical Systems

    Get PDF
    Safety critical systems involve the tight coupling between potentially conflicting control objectives and safety constraints. As a means of creating a formal framework for controlling systems of this form, and with a view toward automotive applications, this paper develops a methodology that allows safety conditions -- expressed as control barrier functions -- to be unified with performance objectives -- expressed as control Lyapunov functions -- in the context of real-time optimization-based controllers. Safety conditions are specified in terms of forward invariance of a set, and are verified via two novel generalizations of barrier functions; in each case, the existence of a barrier function satisfying Lyapunov-like conditions implies forward invariance of the set, and the relationship between these two classes of barrier functions is characterized. In addition, each of these formulations yields a notion of control barrier function (CBF), providing inequality constraints in the control input that, when satisfied, again imply forward invariance of the set. Through these constructions, CBFs can naturally be unified with control Lyapunov functions (CLFs) in the context of a quadratic program (QP); this allows for the achievement of control objectives (represented by CLFs) subject to conditions on the admissible states of the system (represented by CBFs). The mediation of safety and performance through a QP is demonstrated on adaptive cruise control and lane keeping, two automotive control problems that present both safety and performance considerations coupled with actuator bounds

    Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems

    Get PDF
    Many modern nonlinear control methods aim to endow systems with guaranteed properties, such as stability or safety, and have been successfully applied to the domain of robotics. However, model uncertainty remains a persistent challenge, weakening theoretical guarantees and causing implementation failures on physical systems. This paper develops a machine learning framework centered around Control Lyapunov Functions (CLFs) to adapt to parametric uncertainty and unmodeled dynamics in general robotic systems. Our proposed method proceeds by iteratively updating estimates of Lyapunov function derivatives and improving controllers, ultimately yielding a stabilizing quadratic program model-based controller. We validate our approach on a planar Segway simulation, demonstrating substantial performance improvements by iteratively refining on a base model-free controller

    Nonlinear Model Predictive Control of Robotic Systems with Control Lyapunov Functions

    Get PDF
    The theoretical unification of Nonlinear Model Predictive Control (NMPC) with Control Lyapunov Functions (CLFs) provides a framework for achieving optimal control performance while ensuring stability guarantees. In this paper we present the first real-time realization of a unified NMPC and CLF controller on a robotic system with limited computational resources. These limitations motivate a set of approaches for efficiently incorporating CLF stability constraints into a general NMPC formulation. We evaluate the performance of the proposed methods compared to baseline CLF and NMPC controllers with a robotic Segway platform both in simulation and on hardware. The addition of a prediction horizon provides a performance advantage over CLF based controllers, which operate optimally point-wise in time. Moreover, the explicitly imposed stability constraints remove the need for difficult cost function and parameter tuning required by NMPC. Therefore the unified controller improves the performance of each isolated controller and simplifies the overall design process

    Nonlinear Model Predictive Control of Robotic Systems with Control Lyapunov Functions

    Get PDF
    The theoretical unification of Nonlinear Model Predictive Control (NMPC) with Control Lyapunov Functions (CLFs) provides a framework for achieving optimal control performance while ensuring stability guarantees. In this paper we present the first real-time realization of a unified NMPC and CLF controller on a robotic system with limited computational resources. These limitations motivate a set of approaches for efficiently incorporating CLF stability constraints into a general NMPC formulation. We evaluate the performance of the proposed methods compared to baseline CLF and NMPC controllers with a robotic Segway platform both in simulation and on hardware. The addition of a prediction horizon provides a performance advantage over CLF based controllers, which operate optimally point-wise in time. Moreover, the explicitly imposed stability constraints remove the need for difficult cost function and parameter tuning required by NMPC. Therefore the unified controller improves the performance of each isolated controller and simplifies the overall design process

    Distributed predictive control of the 7-Machine CIGRÉ power system

    Get PDF
    Stable operation of the future electrical power system will require efficient techniques for supply-demand balancing, i.e., load-frequency control, due to liberalization of electrical energy production. Currently, there is a growing interest for asymptotically stabilizing the grid frequency via model predictive control (MPC). However, the centralized implementation of standard MPC is hampered by the scale and complexity of power networks. In this paper we therefore evaluate the suitability of a scalable, distributed Lyapunovbased MPC algorithm as an alternative to conventional balancing techniques. The approach is particularly suited for largescale power networks, as it employs only local information and limited communication between directly-coupled generator buses to provide a stabilizing control action. The effectiveness of the distributed control scheme is assessed by simulating it in closed-loop with the 7-machine CIGRE benchmark system

    Composite control Lyapunov functions for robust stabilization of constrained uncertain dynamical systems

    Get PDF
    This work presents innovative scientific results on the robust stabilization of constrained uncertain dynamical systems via Lyapunov-based state feedback control. Given two control Lyapunov functions, a novel class of smooth composite control Lyapunov functions is presented. This class, which is based on the R-functions theory, is universal for the stabilizability of linear differential inclusions and has the following property. Once a desired controlled invariant set is fixed, the shape of the inner level sets can be made arbitrary close to any given ones, in a smooth and non-homothetic way. This procedure is an example of ``merging'' two control Lyapunov functions. In general, a merging function consists in a control Lyapunov function whose gradient is a continuous combination of the gradients of the two parents control Lyapunov functions. The problem of merging two control Lyapunov functions, for instance a global control Lyapunov function with a large controlled domain of attraction and a local one with a guaranteed local performance, is considered important for several control applications. The main reason is that when simultaneously concerning constraints, robustness and optimality, a single Lyapunov function is usually suitable for just one of these goals, but ineffective for the others. For nonlinear control-affine systems, both equations and inclusions, some equivalence properties are shown between the control-sharing property, namely the existence of a single control law which makes simultaneously negative the Lyapunov derivatives of the two given control Lyapunov functions, and the existence of merging control Lyapunov functions. Even for linear systems, the control-sharing property does not always hold, with the remarkable exception of planar systems. For the class of linear differential inclusions, linear programs and linear matrix inequalities conditions are given for the the control-sharing property to hold. The proposed Lyapunov-based control laws are illustrated and simulated on benchmark case studies, with positive numerical results
    • …
    corecore