1,141 research outputs found

    The Role of Constraints in a Segregation Model: The Symmetric Case

    Get PDF
    In this paper we study the effects of constraints on the dynamics of an adaptive segregation model introduced by Bischi and Merlone (2011). The model is described by a two dimensional piecewise smooth dynamical system in discrete time. It models the dynamics of entry and exit of two populations into a system, whose members have a limited tolerance about the presence of individuals of the other group. The constraints are given by the upper limits for the number of individuals of a population that are allowed to enter the system. They represent possible exogenous controls imposed by an authority in order to regulate the system. Using analytical, geometric and numerical methods, we investigate the border collision bifurcations generated by these constraints assuming that the two groups have similar characteristics and have the same level of tolerance toward the members of the other group. We also discuss the policy implications of the constraints to avoid segregation

    Bifurcations and Chaos in Time Delayed Piecewise Linear Dynamical Systems

    Full text link
    We reinvestigate the dynamical behavior of a first order scalar nonlinear delay differential equation with piecewise linearity and identify several interesting features in the nature of bifurcations and chaos associated with it as a function of the delay time and external forcing parameters. In particular, we point out that the fixed point solution exhibits a stability island in the two parameter space of time delay and strength of nonlinearity. Significant role played by transients in attaining steady state solutions is pointed out. Various routes to chaos and existence of hyperchaos even for low values of time delay which is evidenced by multiple positive Lyapunov exponents are brought out. The study is extended to the case of two coupled systems, one with delay and the other one without delay.Comment: 34 Pages, 14 Figure

    Mechanism, dynamics, and biological existence of multistability in a large class of bursting neurons

    Full text link
    Multistability, the coexistence of multiple attractors in a dynamical system, is explored in bursting nerve cells. A modeling study is performed to show that a large class of bursting systems, as defined by a shared topology when represented as dynamical systems, is inherently suited to support multistability. We derive the bifurcation structure and parametric trends leading to multistability in these systems. Evidence for the existence of multirhythmic behavior in neurons of the aquatic mollusc Aplysia californica that is consistent with our proposed mechanism is presented. Although these experimental results are preliminary, they indicate that single neurons may be capable of dynamically storing information for longer time scales than typically attributed to nonsynaptic mechanisms.Comment: 24 pages, 8 figure

    Basins of attraction in nonsmooth models of gear rattle

    Get PDF
    This paper is concerned with the computation of the basins of attraction of a simple one degree-of-freedom backlash oscillator using cell-to-cell mapping techniques. This analysis is motivated by the modeling of order vibration in geared systems. We consider both a piecewise-linear stiffness model and a simpler infinite stiffness impacting limit. The basins reveal rich and delicate dynamics, and we analyze some of the transitions in the system's behavior in terms of smooth and discontinuity-induced bifurcations. The stretching and folding of phase space are illustrated via computations of the grazing curve, and its preimages, and manifold computations of basin boundaries using DsTool (Dynamical Systems Toolkit)
    • ā€¦
    corecore