1,234 research outputs found

    On Strong Secrecy for Multiple Access Channel with States and Causal CSI

    Full text link
    Strong secrecy communication over a discrete memoryless state-dependent multiple access channel (SD-MAC) with an external eavesdropper is investigated. The channel is governed by discrete memoryless and i.i.d. channel states and the channel state information (CSI) is revealed to the encoders in a causal manner. An inner bound of the capacity is provided. To establish the inner bound, we investigate coding schemes incorporating wiretap coding and secret key agreement between the sender and the legitimate receiver. Two kinds of block Markov coding schemes are studied. The first one uses backward decoding and Wyner-Ziv coding and the secret key is constructed from a lossy reproduction of the CSI. The other one is an extended version of the existing coding scheme for point-to-point wiretap channels with causal CSI. We further investigate some capacity-achieving cases for state-dependent multiple access wiretap channels (SD-MAWCs) with degraded message sets. It turns out that the two coding schemes are both optimal in these cases.Comment: Accepted for presentation at ISIT202

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Strong Secrecy for Multiple Access Channels

    Full text link
    We show strongly secret achievable rate regions for two different wiretap multiple-access channel coding problems. In the first problem, each encoder has a private message and both together have a common message to transmit. The encoders have entropy-limited access to common randomness. If no common randomness is available, then the achievable region derived here does not allow for the secret transmission of a common message. The second coding problem assumes that the encoders do not have a common message nor access to common randomness. However, they may have a conferencing link over which they may iteratively exchange rate-limited information. This can be used to form a common message and common randomness to reduce the second coding problem to the first one. We give the example of a channel where the achievable region equals zero without conferencing or common randomness and where conferencing establishes the possibility of secret message transmission. Both coding problems describe practically relevant networks which need to be secured against eavesdropping attacks.Comment: 55 page

    Strongly Secure Communications Over the Two-Way Wiretap Channel

    Full text link
    We consider the problem of secure communications over the two-way wiretap channel under a strong secrecy criterion. We improve existing results by developing an achievable region based on strategies that exploit both the interference at the eavesdropper's terminal and cooperation between legitimate users. We leverage the notion of channel resolvability for the multiple-access channel to analyze cooperative jamming and we show that the artificial noise created by cooperative jamming induces a source of common randomness that can be used for secret-key agreement. We illustrate the gain provided by this coding technique in the case of the Gaussian two-way wiretap channel, and we show significant improvements for some channel configurations.Comment: 11 pages, 7 figures, submitted to IEEE Transactions on Information Forensics and Security, Special Issue: "Using the Physical Layer for Securing the Next Generation of Communication Systems

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Partial Strong Converse for the Non-Degraded Wiretap Channel

    Full text link
    We prove the partial strong converse property for the discrete memoryless \emph{non-degraded} wiretap channel, for which we require the leakage to the eavesdropper to vanish but allow an asymptotic error probability ϵ∈[0,1)\epsilon \in [0,1) to the legitimate receiver. We show that when the transmission rate is above the secrecy capacity, the probability of correct decoding at the legitimate receiver decays to zero exponentially. Therefore, the maximum transmission rate is the same for ϵ∈[0,1)\epsilon \in [0,1), and the partial strong converse property holds. Our work is inspired by a recently developed technique based on information spectrum method and Chernoff-Cramer bound for evaluating the exponent of the probability of correct decoding
    • …
    corecore