12,813 research outputs found

    Reducing Fluid Type Uncertainty with Well Test Analysis

    Get PDF
    Imperial Users onl

    Stability analysis of slug flow control

    Get PDF
    The threat of slugging to production facilities has been known since the 1970s. This undesirable flow phenomenon continues to attract the attention of researchers and operators alike. The most common method for slug mitigation is by choking the valve at the exit of the riser which unfortunately could negatively affect production. The focus, therefore, is to satisfy the need for system stability and to maximize production simultaneously. Active feedback control is a promising way to achieve this. However, due to the complexity of multiphase flow systems, it is a challenge to develop a robust slug control system to achieve the desired performance using existing design tools. In this paper, a new general method for multiphase flow system stability analysis was proposed. Active feedback control was observed to optimize slug attenuation compared with manual choking. The use of soft sensors was believed to be desirable for the practical implementation of the proposed control technique

    Modeling incompressible thermal flows using a central-moment-based lattice Boltzmann method

    Get PDF
    In this paper, a central-moment-based lattice Boltzmann (CLB) method for incompressible thermal flows is proposed. In the method, the incompressible Navier-Stokes equations and the convection-diffusion equation for the temperature field are sloved separately by two different CLB equations. Through the Chapman-Enskog analysis, the macroscopic governing equations for incompressible thermal flows can be reproduced. For the flow field, the tedious implementation for CLB method is simplified by using the shift matrix with a simplified central-moment set, and the consistent forcing scheme is adopted to incorporate forcing effects. Compared with several D2Q5 multiple-relaxation-time (MRT) lattice Boltzmann methods for the temperature equation, the proposed method is shown to be better Galilean invariant through measuring the thermal diffusivities on a moving reference frame. Thus a higher Mach number can be used for convection flows, which decreases the computational load significantly. Numerical simulations for several typical problems confirm the accuracy, efficiency, and stability of the present method. The grid convergence tests indicate that the proposed CLB method for incompressible thermal flows is of second-order accuracy in space

    Numerical implementation of a multiphase model for the analysis and design of reinforced slopes

    Get PDF
    International audienceA multiphase model is proposed for the elastoplastic analysis and design of soil structures reinforced by stiff linear inclusions, where shear and bending effects should be taken into account. A f.e.m-based numerical tool, incorporating a plasticity algorithm adapted to this multiphase model, is developed and illustrated on the example of a slope stabilized by such reinforcing inclusions. Emphasis is put in this analysis on the crucial role played by the shear and flexural behaviour of the inclusions in the slope stabilization
    • …
    corecore