546 research outputs found

    On the reliability of electrical drives for safety-critical applications

    Get PDF
    The aim of this work is to present some issues related to fault tolerant electric drives,which are able to overcome different types of faults occurring in the sensors, in thepower converter and in the electrical machine, without compromising the overallfunctionality of the system. These features are of utmost importance in safety-criticalapplications. In this paper, the reliability of both commercial and innovative driveconfigurations, which use redundant hardware and suitable control algorithms, will beinvestigated for the most common types of fault: besides standard three phase motordrives, also multiphase topologies, open-end winding solutions, multi-machineconfigurations will be analyzed, applied to various electric motor technologies. Thecomplexity of hardware and control strategies will also be compared in this paper, sincethis has a tremendous impact on the investment costs

    Open-phase fault operation on multiphase induction 3 motor drives

    Get PDF
    Hugo Guzman, Ignacio Gonzalez, Federico Barrero and Mario Durán (2015). Open-Phase Fault Operation on Multiphase Induction Motor Drives, Induction Motors - Applications, Control and Fault Diagnostics, Dr. Raul Gregor (Ed.), ISBN: 978-953-51-2207-4, InTech, DOI: 10.5772/60810. Available from: http://www.intechopen.com/books/induction-motors-applications-control-and-fault-diagnostics/open-phase-fault-operation-on-multiphase-induction-motor-drivesMultiphase machines have been recognized in the last few years like an attractive alternative to conventional three-phase ones. This is due to their usefulness in a niche of applications where the reduction in the total power per phase and, mainly, the high overall system reliability and the ability of using the multiphase machine in faulty conditions are required. Electric vehicle and railway traction, all-electric ships, more-electric aircraft or wind power generation systems are examples of up-to-date real applications using multiphase machines, most of them taking advantage of the ability of continuing the operation in faulty conditions. Between the available multiphase machines, symmetrical five-phase induction machines are probably one of the most frequently considered multiphase machines in recent research. However, other multiphase machines have also been used in the last few years due to the development of more powerful microprocessors. This chapter analyzes the behavior of generic n-phase machines (beingn any odd number higher than 3) in faulty operation (considering the most common faulty operation, i.e. the open phase fault). The obtained results will be then particularized to the 5-phase case, where some simulation and experimental results will be presented to show the behavior of the entire system in healthy and faulty conditions. The chapter will be organized as follows: First, the different faults in a multiphase machine are analyzed. Fault conditions are de tailed and explained, and the interest of a multiphase machine in the management of faults is stated. The effect of the open-phase fault operation in the machine model is then studied. A generic n-phase machine is considered, being n any odd number greater than three. The analysis is afterwards particularized to the 5-phase machine, where the open phase fault condition is managed using different control methods and the obtained results are compared. Finally, the conclusions are presented in the last section of the chapter

    Fault Tolerant Dual-Motor Drives: Sizing of Power Electronic

    Get PDF
    This paper analyzes two dual-motor fault-tolerant topologies. The first one supplies independently both machines while the second one connects them in series for reducing the number of transistors. For a given DC-link voltage, the converter component sizing is based on the peak current obtained in the normal and degraded modes.CIFFRE - Thales Grou

    Open-Phase Fault Operation on Multiphase Induction Motor Drives

    Get PDF
    Multiphase machines have been recognized in the last few years like an attractive alternative to conventional three-phase ones. This is due to their usefulness in a niche of applications where the reduction in the total power per phase and, mainly, the high overall system reliability and the ability of using the multiphase machine in faulty conditions are required. Electric vehicle and railway traction, all-electric ships, more-electric aircraft or wind power generation systems are examples of up-to-date real applications using multiphase machines, most of them taking advantage of the ability of continuing the operation in faulty conditions. Between the available multiphase machines, symmetrical five-phase induction machines are probably one of the most frequently considered multiphase machines in recent research. However, other multiphase machines have also been used in the last few years due to the development of more powerful microprocessors. This chapter analyzes the behavior of generic n-phase machines (being n any odd number higher than 3) in faulty operation (considering the most common faulty operation, i.e. the open-phase fault). The obtained results will be then particularized to the 5-phase case, where some simulation and experimental results will be presented to show the behavior of the entire system in healthy and faulty conditions. The chapter will be organized as follows: First, the different faults in a multiphase machine are analyzed. Fault conditions are detailed and explained, and the interest of a multiphase machine in the management of faults is stated. The effect of the open-phase fault operation in the machine model is then studied. A generic n-phase machine is considered, being n any odd number greater than three. The analysis is afterwards particularized to the 5-phase machine, where the open-phase fault condition is managed using different control methods and the obtained results are compared. Finally, the conclusions are presented in the last section of the chapter

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Extension of Finite-Control Set Model-Based Predictive Control Techniques to Fault-Tolerant Multiphase Drives: Analysis and Contributions

    Get PDF
    Las máquinas eléctricas son una de las principales tecnologías que hacen posible las energías renovables y los vehículos eléctricos. La necesidad constante de incrementar la capacidad de potencia para generar más energía o para impulsar vehículos cada vez más grandes, ha motivado la investigación y el desarrollo en el área de las máquinas multifásicas las cuales, gracias a su número de fases, permiten no sólo manejar más potencia con menos pulsaciones de par y contenido armónico en la corriente que las máquinas trifásicas convencionales, sino que también permiten obtener una mayor tolerancia a fallos, aumentando el interés de su implementación en aplicaciones donde la fiabilidad juega un papel importante por razones económicas y de seguridad. La investigación más reciente en el área de sistemas multifásicos se centra en el desarrollo de técnicas que permitan explotar las características específicas y especiales de las máquinas multifásicas, viendo el incremento en el número de fases no como un aumento en la complejidad de implementación, sino como un mayor número de grados de libertad tanto en el diseño como en el control, permitiendo mejorar sus prestaciones y fiabilidad, haciéndolas más atractivas para su uso en aplicaciones industriales. Es así como se han desarrollado técnicas de control que permitan operar a alta velocidad o alto par, tolerancia a diferentes tipos de fallos y máquinas con diferentes conexionados de devanados o con sistemas formados por múltiples variadores y máquinas. El objetivo de esta tesis doctoral es la extensión del control predictivo para máquinas multifásicas (específicamente el control predictivo de estados finitos basado en modelo o FCS-MPC por sus siglas en inglés) a la operación tolerante a fallos, aprovechando la capacidad de tolerancia a fallos que las máquinas multifásicas poseen, asegurando su funcionamiento de una manera eficiente y controlada. Con este fin se estudió el modelo matemático de la máquina en condiciones de pre- y post- falta considerando diferentes tipos de faltas, permitiendo establecer el efecto que las condiciones de fallo tienen en el comportamiento del sistema. Se desarrollaron modelos de simulación de una máquina de inducción de cinco fases, considerando faltas de fase abierta y en el disparo de los IGBT’s de una fase, permitiendo el diseño y validación del controlador FCS-MPC tolerante a fallos, cuyos resultados obtenidos fueron presentados en diversos congresos internacionales. La posterior implementación y validación experimental del control tolerante a fallos propuesto dio lugar a la publicación de dos de los artículos científicos presentados en esta tesis. Del mismo modo, se desarrolló un control tolerante a fallos basado en controladores lineales (de tipo resonante), teniendo en cuenta los esquemas propuestos en publicaciones científicas recientes y se realizó una comparativa entre el control tolerante a fallos basado en FCS-MPC y el controlador resonante ante un fallo de fase abierta, mediante resultados de simulación y experimentales, dando lugar a la publicación en un congreso internacional y en un artículo de revista científica. Las contribuciones de esta tesis doctoral se han publicado en la revista científica IEEE Transactions on Industrial Electronics entre los años 2013/2015

    A multi-port power conversion system for the more electric aircraft

    Get PDF
    In more electric aircraft (MEA) weight reduction and energy efficiency constitute the key figures. Additionally, the safety and continuity of operation of its electrical power distribution system (EPDS) is of critical importance. These sets of desired features are in disagreement with each other, because higher redundancy, needed to guarantee the safety of operation, implies additional weight. In fact, EPDS is usually divided into isolated sections, which need to be sized for the worst-case scenario. Several concepts of EPDS have been investigated, aiming at enabling the power exchange among separate sections, which allows better optimization for power and weight of the whole system. In this paper, an approach based on the widespread use of multi-port power converters for both DC/DC and DC/AC stages is proposed. System integration of these two is proposed as a multiport power conversion system (MPCS), which allows a ring power distribution while galvanic isolation is still maintained, even in fault conditions. Thus, redundancy of MEA is established by no significant weight increase. A machine design analysis shows how the segmented machine could offer superior performance to the traditional one with same weight. Simulation and experimental verifications show the system feasibility in both normal and fault operations

    Optimal Fault-Tolerant Control of Six-Phase Induction Motor Drives with Parallel Converters

    Get PDF
    Multiphase drives and parallel converters have been recently proposed in low-voltage high-power applications. The fault-tolerant capability provided by multiphase drives is then extended with parallel converters, increasing their suitability for safety-critical and renewable uses. This advantageous feature, compared to standard threephase drives, has been analyzed in the event of open-phase faults. However, when using parallel converters, a converter fault does not necessarily imply an open-phase condition, but usually just a limited phase current capability. This work analyzes the fault-tolerant capability of six-phase drives with parallel converter supply. Different scenarios considering up to three faults for single and two neutral configurations are examined, optimizing off-line the post-fault currents and modifying accordingly the control strategies. Experimental results confirm the smooth transition from pre- to post-fault situations and the enhanced post-fault torque capability.Ministerio de Ciencia e Innovación ENE2014- 52536-C2-1-R DPI2013-44278-RJunta de Andalucía P11-TEP-755

    A Scalable System Architecture for High-Performance Fault Tolerant Machine Drives

    Get PDF
    When targeting mission critical applications, the design of the electronic actuation systems needs to consider many requirements and constraints not typical in standard industrial applications. One of these is tolerance to faults, as the unplanned shutdown of a critical subsystem, if not handled correctly, could lead to financial harm, environmental disaster, or even loss of life. One way this can be avoided is through the design of an electric drive systems based on multi-phase machines that can keep operating, albeit with degraded performance, in a partial configuration under fault conditions. Distributed architectures are uniquely suited to meet these challenges, by providing a large degree of isolation between the various components. This paper presents a system architecture suitable for scalable and high-performance fault tolerant machine drive systems. the effectiveness of this system is demonstrated through theoretical analysis and experimental verification on a six-phase machine

    Modular switched reluctance machines to be used in automotive applications

    Get PDF
    In the last decades industry, including also that of electrical machines and drives, was pushed near to its limits by the high market demands and fierce competition. As a response to the demanding challenges, improvements were made both in the design and manufacturing of electrical machines and drives. One of the introduced advanced technological solutions was the modular construction. This approach enables on a hand easier and higher productivity manufacturing, and on the other hand fast repairing in exploitation. Switched reluctance machines (SRMs) are very well fitted for modular construction, since the magnetic insulation of the phases is a basic design requirement. The paper is a survey of the main achievements in the field of modular electrical machines, (especially SRMs), setting the focus on the machines designed to be used in automotive applications
    corecore