721 research outputs found

    Risky Income, Life Cycle Consumption, and Precautionary Savings

    Get PDF
    This paper argues that precautionary savings against uncertain income comprise a large fraction of aggregate savings. A closed-form approximation for life cycle consumption subject to uncertain interest rates and earnings is derived by taking a second-order Taylor-Series approximation of the Euler equations. Using empirical measures of income uncertainty, I find that precautionary savings comprises up to 56 percent of aggregate life cycle savings. The derived expression for n-period optimal consumption is easily implemented for econometric estimation, and accords well with the exact numerical solution. Empirical comparisons of savings patterns among occupational groups using the Consumer Expenditure Survey contradict the predictions of the life cycle model. Riskier occupations, such as the self-employed and salespersons, save less than other occupations, although this finding may in part reflect unobservable differences in risk aversion among occupations.

    Data-driven scenario generation for two-stage stochastic programming

    Get PDF
    Optimisation under uncertainty has always been a focal point within the Process Systems Engineering (PSE) research agenda. In particular, the efficient manipulation of large amount of data for the uncertain parameters constitutes a crucial condition for effectively tackling stochastic programming problems. In this context, this work proposes a new data-driven Mixed-Integer Linear Programming (MILP) model for the Distribution & Moment Matching Problem (DMP). For cases with multiple uncertain parameters a copula-based simulation of initial scenarios is employed as preliminary step. Moreover, the integration of clustering methods and DMP in the proposed model is shown to enhance computational performance. Finally, we compare the proposed approach with state-of-the-art scenario generation methodologies. Through a number of case studies we highlight the benefits regarding the quality of the generated scenario trees by evaluating the corresponding obtained stochastic solutions

    A multiperiod multiobjective portfolio selection model with fuzzy random returns for large scale securities data

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordIt is agreed that portfolio selection models are of great importance for the financial market. In this article, a constrained multiperiod multiobjective portfolio model is established. This model introduces several constraints to reflect the trading restrictions and quantifies future security returns by fuzzy random variables to capture fuzzy and random uncertainties in the financial market. Meanwhile, it considers terminal wealth, conditional value at risk (CVaR), and skewness as tricriteria for decision making. Obviously, the proposed model is computationally challenging. This situation gets worse when investors are interested in a larger financial market since the data they need to analyze may constitute typical big data. Whereafter, a novel intelligent hybrid algorithm is devised to solve the presented model. In this algorithm, the uncertain objectives of the model are approximated by a simulated annealing resilient back propagation (SARPROP) neural network which is trained on the data provided by fuzzy random simulation. An improved imperialist competitive algorithm, named IFMOICA, is designed to search the solution space. The intelligent hybrid algorithm is compared with the one obtained by combining NSGA-II, SARPROP neural network, and fuzzy random simulation. The results demonstrate that the proposed algorithm significantly outperforms the compared one not only in the running time but also in the quality of obtained Pareto frontier. To improve the computational efficiency and handle the large scale securities data, the algorithm is parallelized using MPI. The conducted experiments illustrate that the parallel algorithm is scalable and can solve the model with the size of securities more than 400 in an acceptable time

    Multiobjective Approach to Portfolio Optimization in the Light of the Credibility Theory

    Get PDF
    [EN] The present research proposes a novel methodology to solve the problems faced by investors who take into consideration different investment criteria in a fuzzy context. The approach extends the stochastic mean-variance model to a fuzzy multiobjective model where liquidity is considered to quantify portfolio's performance, apart from the usual metrics like return and risk. The uncertainty of the future returns and the future liquidity of the potential assets are modelled employing trapezoidal fuzzy numbers. The decision process of the proposed approach considers that portfolio selection is a multidimensional issue and also some realistic constraints applied by investors. Particularly, this approach optimizes the expected return, the risk and the expected liquidity of the portfolio, considering bound constraints and cardinality restrictions. As a result, an optimization problem for the constraint portfolio appears, which is solved by means of the NSGA-II algorithm. This study defines the credibilistic Sortino ratio and the credibilistic STARR ratio for selecting the optimal portfolio. An empirical study on the S&P100 index is included to show the performance of the model in practical applications. The results obtained demonstrate that the novel approach can beat the index in terms of return and risk in the analyzed period, from 2008 until 2018.García García, F.; González-Bueno, J.; Guijarro, F.; Oliver-Muncharaz, J.; Tamosiuniene, R. (2020). Multiobjective Approach to Portfolio Optimization in the Light of the Credibility Theory. Technological and Economic Development of Economy (Online). 26(6):1165-1186. https://doi.org/10.3846/tede.2020.13189S11651186266Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of Banking & Finance, 26(7), 1487-1503. doi:10.1016/s0378-4266(02)00283-2Ahmed, A., Ali, R., Ejaz, A., & Ahmad, I. (2018). Sectoral integration and investment diversification opportunities: evidence from Colombo Stock Exchange. Entrepreneurship and Sustainability Issues, 5(3), 514-527. doi:10.9770/jesi.2018.5.3(8)Arenas Parra, M., Bilbao Terol, A., & Rodrı́guez Urı́a, M. V. (2001). A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research, 133(2), 287-297. doi:10.1016/s0377-2217(00)00298-8Arribas, I., Espinós-Vañó, M. D., García, F., & Tamošiūnienė, R. (2019). Negative screening and sustainable portfolio diversification. Entrepreneurship and Sustainability Issues, 6(4), 1566-1586. doi:10.9770/jesi.2019.6.4(2)Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance, 9(3), 203-228. doi:10.1111/1467-9965.00068Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2(1), 95-121. doi:10.1016/0304-405x(75)90025-2Bermúdez, J. D., Segura, J. V., & Vercher, E. (2012). A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets and Systems, 188(1), 16-26. doi:10.1016/j.fss.2011.05.013Bezoui, M., Moulaï, M., Bounceur, A., & Euler, R. (2018). An iterative method for solving a bi-objective constrained portfolio optimization problem. Computational Optimization and Applications, 72(2), 479-498. doi:10.1007/s10589-018-0052-9Bi, T., Zhang, B., & Wu, H. (2013). Measuring Downside Risk Using High-Frequency Data: Realized Downside Risk Measure. Communications in Statistics - Simulation and Computation, 42(4), 741-754. doi:10.1080/03610918.2012.655826Carlsson, C., Fullér, R., & Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Sets and Systems, 131(1), 13-21. doi:10.1016/s0165-0114(01)00251-2Chen, W., & Xu, W. (2018). A Hybrid Multiobjective Bat Algorithm for Fuzzy Portfolio Optimization with Real-World Constraints. International Journal of Fuzzy Systems, 21(1), 291-307. doi:10.1007/s40815-018-0533-0Choobineh, F., & Branting, D. (1986). A simple approximation for semivariance. European Journal of Operational Research, 27(3), 364-370. doi:10.1016/0377-2217(86)90332-2Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017Fang, Y., Lai, K. K., & Wang, S.-Y. (2006). Portfolio rebalancing model with transaction costs based on fuzzy decision theory. European Journal of Operational Research, 175(2), 879-893. doi:10.1016/j.ejor.2005.05.020Favre, L., & Galeano, J.-A. (2002). Mean-Modified Value-at-Risk Optimization with Hedge Funds. The Journal of Alternative Investments, 5(2), 21-25. doi:10.3905/jai.2002.319052García, F., González-Bueno, J., Guijarro, F., & Oliver, J. (2020). Forecasting the Environmental, Social, and Governance Rating of Firms by Using Corporate Financial Performance Variables: A Rough Set Approach. Sustainability, 12(8), 3324. doi:10.3390/su12083324García, González-Bueno, Oliver, & Riley. (2019). Selecting Socially Responsible Portfolios: A Fuzzy Multicriteria Approach. Sustainability, 11(9), 2496. doi:10.3390/su11092496García, F., González-Bueno, J., Oliver, J., & Tamošiūnienė, R. (2019). A CREDIBILISTIC MEAN-SEMIVARIANCE-PER PORTFOLIO SELECTION MODEL FOR LATIN AMERICA. Journal of Business Economics and Management, 20(2), 225-243. doi:10.3846/jbem.2019.8317García, F., Guijarro, F., & Moya, I. (2013). A MULTIOBJECTIVE MODEL FOR PASSIVE PORTFOLIO MANAGEMENT: AN APPLICATION ON THE S&P 100 INDEX. Journal of Business Economics and Management, 14(4), 758-775. doi:10.3846/16111699.2012.668859García, F., Guijarro, F., & Oliver, J. (2017). Index tracking optimization with cardinality constraint: a performance comparison of genetic algorithms and tabu search heuristics. Neural Computing and Applications, 30(8), 2625-2641. doi:10.1007/s00521-017-2882-2García, F., Guijarro, F., Oliver, J., & Tamošiūnienė, R. (2018). HYBRID FUZZY NEURAL NETWORK TO PREDICT PRICE DIRECTION IN THE GERMAN DAX-30 INDEX. Technological and Economic Development of Economy, 24(6), 2161-2178. doi:10.3846/tede.2018.6394Goel, A., Sharma, A., & Mehra, A. (2018). Index tracking and enhanced indexing using mixed conditional value-at-risk. Journal of Computational and Applied Mathematics, 335, 361-380. doi:10.1016/j.cam.2017.12.015González-Bueno, J. (2019). Optimización multiobjetivo para la selección de carteras a la luz de la teoría de la credibilidad. Una aplicación en el mercado integrado latinoamericano. Editorial Universidad Pontificia Bolivariana.Gupta, P., Inuiguchi, M., & Mehlawat, M. K. (2011). A hybrid approach for constructing suitable and optimal portfolios. Expert Systems with Applications, 38(5), 5620-5632. doi:10.1016/j.eswa.2010.10.073Gupta, P., Inuiguchi, M., Mehlawat, M. K., & Mittal, G. (2013). Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints. Information Sciences, 229, 1-17. doi:10.1016/j.ins.2012.12.011Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Portfolio Optimization Using Credibility Theory. Studies in Fuzziness and Soft Computing, 127-160. doi:10.1007/978-3-642-54652-5_5Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). Portfolio Optimization with Interval Coefficients. Studies in Fuzziness and Soft Computing, 33-59. doi:10.1007/978-3-642-54652-5_2Gupta, P., Mehlawat, M. K., Kumar, A., Yadav, S., & Aggarwal, A. (2020). A Credibilistic Fuzzy DEA Approach for Portfolio Efficiency Evaluation and Rebalancing Toward Benchmark Portfolios Using Positive and Negative Returns. International Journal of Fuzzy Systems, 22(3), 824-843. doi:10.1007/s40815-020-00801-4Gupta, P., Mehlawat, M. K., & Saxena, A. (2010). A hybrid approach to asset allocation with simultaneous consideration of suitability and optimality. Information Sciences, 180(11), 2264-2285. doi:10.1016/j.ins.2010.02.007Gupta, P., Mehlawat, M. K., Yadav, S., & Kumar, A. (2020). Intuitionistic fuzzy optimistic and pessimistic multi-period portfolio optimization models. Soft Computing, 24(16), 11931-11956. doi:10.1007/s00500-019-04639-3Gupta, P., Mittal, G., & Mehlawat, M. K. (2013). Expected value multiobjective portfolio rebalancing model with fuzzy parameters. Insurance: Mathematics and Economics, 52(2), 190-203. doi:10.1016/j.insmatheco.2012.12.002Heidari-Fathian, H., & Davari-Ardakani, H. (2019). Bi-objective optimization of a project selection and adjustment problem under risk controls. Journal of Modelling in Management, 15(1), 89-111. doi:10.1108/jm2-07-2018-0106Hilkevics, S., & Semakina, V. (2019). The classification and comparison of business ratios analysis methods. Insights into Regional Development, 1(1), 48-57. doi:10.9770/ird.2019.1.1(4)Huang, X. (2006). Fuzzy chance-constrained portfolio selection. Applied Mathematics and Computation, 177(2), 500-507. doi:10.1016/j.amc.2005.11.027Huang, X. (2008). Mean-semivariance models for fuzzy portfolio selection. Journal of Computational and Applied Mathematics, 217(1), 1-8. doi:10.1016/j.cam.2007.06.009Huang, X. (2009). A review of credibilistic portfolio selection. Fuzzy Optimization and Decision Making, 8(3), 263-281. doi:10.1007/s10700-009-9064-3Huang, X. (2010). Portfolio Analysis. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-642-11214-0Huang, X. (2017). A review of uncertain portfolio selection. Journal of Intelligent & Fuzzy Systems, 32(6), 4453-4465. doi:10.3233/jifs-169211Huang, X., & Di, H. (2016). Uncertain portfolio selection with background risk. Applied Mathematics and Computation, 276, 284-296. doi:10.1016/j.amc.2015.12.018Huang, X., & Wang, X. (2019). International portfolio optimization based on uncertainty theory. Optimization, 70(2), 225-249. doi:10.1080/02331934.2019.1705821Huang, X., & Yang, T. (2020). How does background risk affect portfolio choice: An analysis based on uncertain mean-variance model with background risk. Journal of Banking & Finance, 111, 105726. doi:10.1016/j.jbankfin.2019.105726Jalota, H., Thakur, M., & Mittal, G. (2017). Modelling and constructing membership function for uncertain portfolio parameters: A credibilistic framework. Expert Systems with Applications, 71, 40-56. doi:10.1016/j.eswa.2016.11.014Jalota, H., Thakur, M., & Mittal, G. (2017). A credibilistic decision support system for portfolio optimization. Applied Soft Computing, 59, 512-528. doi:10.1016/j.asoc.2017.05.054Kaplan, P. D., & Alldredge, R. H. (1997). Semivariance in Risk-Based Index Construction. The Journal of Investing, 6(2), 82-87. doi:10.3905/joi.1997.408419Konno, H., & Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science, 37(5), 519-531. doi:10.1287/mnsc.37.5.519Li, B., Zhu, Y., Sun, Y., Aw, G., & Teo, K. L. (2018). Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint. Applied Mathematical Modelling, 56, 539-550. doi:10.1016/j.apm.2017.12.016Li, H.-Q., & Yi, Z.-H. (2019). Portfolio selection with coherent Investor’s expectations under uncertainty. Expert Systems with Applications, 133, 49-58. doi:10.1016/j.eswa.2019.05.008Li, X., & Qin, Z. (2014). Interval portfolio selection models within the framework of uncertainty theory. Economic Modelling, 41, 338-344. doi:10.1016/j.econmod.2014.05.036Liagkouras, K., & Metaxiotis, K. (2015). Efficient Portfolio Construction with the Use of Multiobjective Evolutionary Algorithms: Best Practices and Performance Metrics. International Journal of Information Technology & Decision Making, 14(03), 535-564. doi:10.1142/s0219622015300013Liu, B. (2004). Uncertainty Theory. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39987-2Baoding Liu, & Yian-Kui Liu. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4), 445-450. doi:10.1109/tfuzz.2002.800692Liu, N., Chen, Y., & Liu, Y. (2018). Optimizing portfolio selection problems under credibilistic CVaR criterion. Journal of Intelligent & Fuzzy Systems, 34(1), 335-347. doi:10.3233/jifs-171298Liu, Y.-J., & Zhang, W.-G. (2018). Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory. International Journal of Information Technology & Decision Making, 17(03), 941-968. doi:10.1142/s0219622018500190Mansour, N., Cherif, M. S., & Abdelfattah, W. (2019). Multi-objective imprecise programming for financial portfolio selection with fuzzy returns. Expert Systems with Applications, 138, 112810. doi:10.1016/j.eswa.2019.07.027Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77-91. doi:10.1111/j.1540-6261.1952.tb01525.xMarkowitz, H., Todd, P., Xu, G., & Yamane, Y. (1993). Computation of mean-semivariance efficient sets by the Critical Line Algorithm. Annals of Operations Research, 45(1), 307-317. doi:10.1007/bf02282055Martin, R. D., Rachev, S. (Zari), & Siboulet, F. (2003). Phi-alpha optimal portfolios and extreme risk management. Wilmott, 2003(6), 70-83. doi:10.1002/wilm.42820030619Mehlawat, M. K. (2016). Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels. Information Sciences, 345, 9-26. doi:10.1016/j.ins.2016.01.042Mehlawat, M. K., Gupta, P., Kumar, A., Yadav, S., & Aggarwal, A. (2020). Multiobjective Fuzzy Portfolio Performance Evaluation Using Data Envelopment Analysis Under Credibilistic Framework. IEEE Transactions on Fuzzy Systems, 28(11), 2726-2737. doi:10.1109/tfuzz.2020.2969406Mehralizade, R., Amini, M., Sadeghpour Gildeh, B., & Ahmadzade, H. (2020). Uncertain random portfolio selection based on risk curve. Soft Computing, 24(17), 13331-13345. doi:10.1007/s00500-020-04751-9Moeini, M. (2019). Solving the index tracking problem: a continuous optimization approach. Central European Journal of Operations Research. doi:10.1007/s10100-019-00633-0Narkunienė, J., & Ulbinaitė, A. (2018). Comparative analysis of company performance evaluation methods. Entrepreneurship and Sustainability Issues, 6(1), 125-138. doi:10.9770/jesi.2018.6.1(10)Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249-258. doi:10.1007/s12540-009-0249-7Pflug, G. C. (2000). Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk. Probabilistic Constrained Optimization, 272-281. doi:10.1007/978-1-4757-3150-7_15Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2(3), 21-41. doi:10.21314/jor.2000.038Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443-1471. doi:10.1016/s0378-4266(02)00271-6Rubio, A., Bermúdez, J. D., & Vercher, E. (2016). Forecasting portfolio returns using weighted fuzzy time series methods. International Journal of Approximate Reasoning, 75, 1-12. doi:10.1016/j.ijar.2016.03.007Saborido, R., Ruiz, A. B., Bermúdez, J. D., Vercher, E., & Luque, M. (2016). Evolutionary multi-objective optimization algorithms for fuzzy portfolio selection. Applied Soft Computing, 39, 48-63. doi:10.1016/j.asoc.2015.11.005Sharpe, W. F. (1966). Mutual Fund Performance. The Journal of Business, 39(S1), 119. doi:10.1086/294846Sharpe, W. F. (1994). The Sharpe Ratio. The Journal of Portfolio Management, 21(1), 49-58. doi:10.3905/jpm.1994.409501Sortino, F. A., & Price, L. N. (1994). Performance Measurement in a Downside Risk Framework. The Journal of Investing, 3(3), 59-64. doi:10.3905/joi.3.3.59Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221-248. doi:10.1162/evco.1994.2.3.221Vercher, E., & Bermúdez, J. D. (2012). Fuzzy Portfolio Selection Models: A Numerical Study. Financial Decision Making Using Computational Intelligence, 253-280. doi:10.1007/978-1-4614-3773-4_10Vercher, E., & Bermudez, J. D. (2013). A Possibilistic Mean-Downside Risk-Skewness Model for Efficient Portfolio Selection. IEEE Transactions on Fuzzy Systems, 21(3), 585-595. doi:10.1109/tfuzz.2012.2227487Vercher, E., & Bermúdez, J. D. (2015). Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Systems with Applications, 42(20), 7121-7131. doi:10.1016/j.eswa.2015.05.020Vercher, E., Bermúdez, J. D., & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158(7), 769-782. doi:10.1016/j.fss.2006.10.026Wang, S., & Zhu, S. (2002). Fuzzy Optimization and Decision Making, 1(4), 361-377. doi:10.1023/a:1020907229361Yue, W., & Wang, Y. (2017). A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios. Physica A: Statistical Mechanics and its Applications, 465, 124-140. doi:10.1016/j.physa.2016.08.009Yue, W., Wang, Y., & Xuan, H. (2018). Fuzzy multi-objective portfolio model based on semi-variance–semi-absolute deviation risk measures. Soft Computing, 23(17), 8159-8179. doi:10.1007/s00500-018-3452-yZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-xZhai, J., & Bai, M. (2018). Mean-risk model for uncertain portfolio selection with background risk. Journal of Computational and Applied Mathematics, 330, 59-69. doi:10.1016/j.cam.2017.07.038Zhao, Z., Wang, H., Yang, X., & Xu, F. (2020). CVaR-cardinality enhanced indexation optimization with tunable short-selling constraints. Applied Economics Letters, 28(3), 201-207. doi:10.1080/13504851.2020.174015

    Optimal Portfolio Management for Individual Pension Plans

    Get PDF
    We explore the various arguments for and against the recommendation that younger households should invest a larger share of their pension wealth in risky assets. The ability of young agents to compensate their financial losses by saving more during their career provides the strongest argument in favour of younger people investing more aggressively in the stock market. Meanreversion in stock returns yields another argument. However, the uninsurability of the risky human capital goes in the opposite direction, together with the imperfect knowledge that young investors have about the distribution of asset returns.dynamic portfolio choice, pension plan, retirement, time horizon

    Applications of biased randomised algorithms and simheuristics to asset and liability management

    Get PDF
    Asset and Liability Management (ALM) has captured the attention of academics and financial researchers over the last few decades. On the one hand, we need to try to maximise our wealth by taking advantage of the financial market and, on the other hand, we need to cover our payments (liabilities) over time. The purpose of ALM is to give investors a series of resources or techniques to select the appropriate assets on the financial market that respond to the aforementioned two key factors: cover our liabilities and maximise our wealth. This thesis presents a set of techniques that are capable of tackling realistic financial problems without the usual requirement of considerable computational resources. These techniques are based on heuristics and simulation. Specifically, a biased randomised metaheuristic model is developed that has a direct application in the way insurance companies usually operate. The algorithm makes it possible to efficiently select the smallest number of assets, mainly fixed income, on the balance sheet while guaranteeing the company's obligations. This development allows for the incorporating of the credit quality of the issuer of the assets used. Likewise, a portfolio optimisation model with liabilities is developed and solved with a genetic algorithm. The portfolio optimisation problem differs from the usual one in that it is multi-period, and incorporates liabilities over time. Additionally, the possibility of external financing is included when the entity does not have sufficient cash. These conditions give rise to a complex problem that is efficiently solved by an evolutionary algorithm. In both cases, the algorithms are improved with the incorporation of Monte Carlo simulation. This allows the solutions to be robust when considering realistic market situations. The results are very promising. This research shows that simheuristics is an ideal method for this type of problem.La gestión de activos y pasivos (asset and liability management, ALM) ha acaparado la atención de académicos e investigadores financieros en las últimas décadas. Por un lado, debemos tratar de maximizar nuestra riqueza aprovechando el mercado financiero, y por otro, debemos cubrir nuestros pagos (pasivos) a lo largo del tiempo. El objetivo del ALM es dotar al inversor de una serie de recursos o técnicas para seleccionar los activos del mercado financiero adecuados para obedecer a los dos factores clave mencionados: cumplir con nuestros pasivos y maximizar nuestra riqueza. Esta tesis presenta un conjunto de técnicas que son capaces de abordar problemas financieros realistas sin la necesidad habitual de considerables recursos computacionales. Estas técnicas se basan en la heurística y la simulación. En concreto, se desarrolla un modelo metaheurístico sesgado que tiene una aplicación directa en la operación habitual de inmunización de las compañías de seguros. El algoritmo permite seleccionar eficientemente el menor número de activos, principalmente de renta fija, en el balance y garantizar las obligaciones de la compañía. Este desarrollo permite incorporar la calidad crediticia del emisor de los activos utilizados. Asimismo, se desarrolla un modelo de optimización de la cartera con el pasivo y se resuelve con un algoritmo genético. El problema de optimización de la cartera difiere del habitual en que es multiperiodo e incorpora los pasivos a lo largo del tiempo. Además, se incluye la posibilidad de financiación externa cuando la entidad no tiene suficiente efectivo. Estas condiciones dan lugar a un problema complejo que se resuelve eficientemente mediante un algoritmo evolutivo. En ambos casos, los algoritmos se mejoran con la incorporación de la simulación de Montecarlo. Esto permite que las soluciones sean robustas cuando consideramos situaciones de mercado realistas. Los resultados son muy prometedores. Esta investigación demuestra que la simheurística es un método ideal para este tipo de problemas.La gestió d'actius i passius (asset and liability management, ALM) ha acaparat l'atenció d'acadèmics i investigadors financers les darreres dècades. D'una banda, hem de mirar de maximitzar la nostra riquesa aprofitant el mercat financer, i de l'altra, hem de cobrir els nostres pagaments (passius) al llarg del temps. L'objectiu de l'ALM és dotar l'inversor d'una sèrie de recursos o tècniques per seleccionar els actius del mercat financer adequats per obeir als dos factors clau esmentats: complir els passius i maximitzar la nostra riquesa. Aquesta tesi presenta un conjunt de tècniques que són capaces d'abordar problemes financers realistes sense la necessitat habitual de recursos computacionals considerables. Aquestes tècniques es basen en l'heurística i la simulació. En concret, es desenvolupa un model metaheurístic esbiaixat que té una aplicació directa a l'operació habitual d'immunització de les companyies d'assegurances. L'algorisme permet seleccionar eficientment el menor nombre d'actius, principalment de renda fixa, al balanç i garantir les obligacions de la companyia. Aquest desenvolupament permet incorporar la qualitat creditícia de l'emissor dels actius utilitzats. Així mateix, es desenvolupa un model d'optimització de la cartera amb el passiu i es resol amb un algorisme genètic. El problema d'optimització de la cartera difereix de l'habitual en el fet que és multiperíode i incorpora els passius al llarg del temps. A més, s'inclou la possibilitat de finançament extern quan l'entitat no té prou efectiu. Aquestes condicions donen lloc a un problema complex que es resol eficientment mitjançant un algorisme evolutiu. En tots dos casos, els algorismes es milloren amb la incorporació de la simulació de Montecarlo. Això permet que les solucions siguin robustes quan considerem situacions de mercat realistes. Els resultats són molt prometedors. Aquesta recerca demostra que la simheurística és un mètode ideal per a aquesta mena de problemes.Tecnologías de la información y de rede

    Parameter uncertainty in portfolio optimization

    Get PDF
    La modelización de decisiones reales supone la interacción de dos elementos: un problema de optimización y un procedimiento para estimar los parámetros que definen dicho modelo. Cualquier técnica de estimación requiere de la utilización de información muestral disponible, la cual es aleatoriamente dada. Dependiendo de dicha muestra, los estimadores pueden variar ampliamente, y en consecuencia uno puede obtener soluciones muy distintas del modelo. Concretamente, la incertidumbre de los estimadores que definen el modelo resulta en decisiones inciertas. El análisis del impacto de la incertidumbre de los parámetros en la optimización de carteras es un área muy activo en estadística e investigación operativa. En esta tesis tratamos el impacto de la incertidumbre de los parámetros en la optimización de carteras. En concreto, estudiamos y caracterizamos la pérdida esperada de los inversores que usan información muestral para construir sus carteras optimas, y además proponemos nuevas técnicas para aliviar dicha incertidumbre. Primero estudiamos diferentes criterios de calibración para estimadores shrinkage en el contexto de la optimización de carteras. En concreto consideramos diferentes métodos de calibración para estimadores shrinkage del vector de medias, la matriz de covarianzas y el vector de pesos. Para cada método de calibración damos expresiones explícitas de la intensidad optima del shrinkage y además proponemos un nuevo enfoque no-paramétrico para el cálculo de la intensidad de shrinkage de cada criterio de calibración. Finalmente evaluamos el comportamiento de cada método de calibración con datos simulados y empíricos. En segundo lugar analizamos el impacto de la incertidumbre de los parámetros para un inversor multiperíodo que se enfrenta a costes de transacción. Caracterizamos la pérdida esperada del inversor multiperíodo y encontramos que dicha pérdida es igual al producto de la perdida de un solo periodo y otro término que recoge los efectos multiperíodo en la perdida de utilidad. Además proponemos dos carteras multiperíodo de tipo shrinkage que ayudan a mitigar la incertidumbre de los parámetros. Finalmente analizamos el comportamiento de las carteras multiperíodo que proponemos y encontramos que el inversor puede sufrir grandes pérdidas si ignora los costes de transacción, la incertidumbre de los parámetros o ambos elementos.Modeling every real-world decision involves two elements: an optimization problem and a procedure to estimate the parameters of the model. Any estimation technique requires the utilization of available sample information, which is random. Depending on the given sample, the estimates may vary widely, and in turn, one may obtain very different solutions from the model. Precisely, the uncertainty of the estimates that define the parameters of the model results into uncertain decisions. Analyzing the impact of parameter uncertainty in optimization models is an active area of study in statistics and operations research. In this dissertation, we address the impact of parameter uncertainty within the context of portfolio optimization. In particular, we study and characterize the expected loss for investors that use sample estimators to construct their optimal portfolios, and we propose several techniques to mitigate the impact of parameter uncertainty. First, we study different calibration criteria for shrinkage estimators in the context of portfolio optimization. Precisely, we study shrinkage estimators for both the inputs and the output of the portfolio model. In particular, we consider a set of dffierent calibration criteria to construct shrinkage estimators for the vector of means, the covariance matrix, and the vector of portfolio weights. We provide analytical expressions for the optimal shrinkage intensity of each calibration criteria, and in addition, we propose a novel non-parametric approach to compute the optimal shrinkage intensity. We characterize the out-of-sample performance of shrinkage estimators for portfolio selection with simulatedand empirical datasets. Second, we study the impact of parameter uncertainty in multiperiod portfolio selection with transaction costs. We characterize the expected loss of a multiperiod investor, and we find that it is equal to the product between the single-period utility loss and a second term that captures the multiperiod effects on the overall utility loss. In addition, we propose two multiperiod shrinkage portfolios to mitigate the impact of parameter uncertainty. We test the out-of-sample performance of these novel multiperiod shrinkage portfolios with simulated and empirical datasets, and we find that ignoring transaction costs, parameter uncertainty, or both, results into large losses in the investor's performance

    Portfolio Construction: The Efficient Diversification of Marketing Investments

    Get PDF
    Efforts in the marketing sciences can be distinguished between the analysis of individual customers and the examination of portfolios of customers, giving scarce theoretical guidance concerning the strategic allocation of promotional investments. Yet, strategic asset allocation is considered in financial economics theory to be the most important set of investment decisions. The problem addressed in this study was the application of strategic asset allocation theory from financial economics to marketing science with the aim of improving the financial results of investment in direct marketing promotions. This research investigated the components of efficient marketing portfolio construction which include multiattribute numerical optimization, stochastic Brownian motion, peer index tracking schemes, and data mining methods to formulate unique investable asset classes. Three outcomes resulted from this study on optimal diversification: (a) reduced saturative promotional activities balancing inefficient advertising cost and enterprise revenue objectives to achieve an investment equilibrium state; (b) the use of utility theory to assist in the lexicographic ordering of goal priorities; and (c) the solution approach to a multiperiod linear goal program with stochastic extensions. A performance test using a large archival set of customer data illustrated the benefits of efficient portfolio construction. The test asset allocation resulted in significantly more reward than that of the benchmark case. The results of this grounded theory study may be of interest to marketing researchers, operations research practitioners, and functional marketing executives. The social change implication is increased efficiency in allocation of large advertising budgets resulting in improved corporate performance
    corecore