1,759 research outputs found

    Assessment of the Multipath Mitigation Effect of Vector Tracking in an Urban Environment

    Get PDF
    Today, smart mobiles play an important role in our daily life. Most of these devices are equipped with a navigation function based on GNSS positioning. However, these devices may not work accurately in urban environments due to severe multipath interference and non-line of sight (NLOS) reception caused by nearby buildings. A promising approach for reducing the effect of multipath interference and NLOS reception is vector tracking (VT). VT is well-known for its robustness against poor signal-to-noise levels. However, its capability against multipath and NLOS has yet to be determined. The new combination of this paper is therefore to evaluate the performance of vector tracking in the presence of multipath and NLOS effects. A vector delay lock loop (VDLL) is used as the vector tracking technique. The noise tuning of the extended Kalman filter (EKF) in vector tracking is a key factor affecting its performance. Therefore, developed an adaptive noise tuning algorithm had been based on the measurement innovation. In order to evaluate vector tracking’s performance, equivalent conventional tracking loops are used as a control. GNSS signals were collected, while walking around in a challenging urban environment subject to multipath interference. The experimental results show that VT generates a more stable code numerical-controlled oscillator (NCO) frequency than CT does. This characteristic could reduce the impact of multipath interference which is reflected in a smaller position error using VT during most of run. To further test capability of VT against signal attenuation, this paper applies a signal cancellation method called direct signal cancellation algorithm to simulate the scenario of signal termination and NLOS reception. According to the simulation, VT provides not only robustness against signal termination but can also detect NLOS reception without any external aiding

    A new multipath mitigation method for GNSS receivers based on antenna array

    Get PDF
    the potential of small antenna array for multipath mitigation in GNSS systems is considered in this paper. To discriminate the different incoming signals (Line of sight and multipaths), a new implementation of the well known SAGE algorithm is proposed. This allows a significant complexity reduction and it is fully compatible with conventional GNSS receivers. Theoretical study thanks to the Cramer Rao Bound derivation and tracking simulation results (in static and dynamic scenarios) show that the proposed method is a very promising approach for the multipath mitigation problem in GNSS receivers

    Cross-Correlation-Function-Based Multipath Mitigation Method for Sine-BOC Signals

    Get PDF
    Global Navigation Satellite Systems (GNSS) positioning accuracy indoor and urban canyons environments are greatly affected by multipath due to distortions in its autocorrelation function. In this paper, a cross-correlation function between the received sine phased Binary Offset Carrier (sine-BOC) modulation signal and the local signal is studied firstly, and a new multipath mitigation method based on cross-correlation function for sine-BOC signal is proposed. This method is implemented to create a cross-correlation function by designing the modulated symbols of the local signal. The theoretical analysis and simulation results indicate that the proposed method exhibits better multipath mitigation performance compared with the traditional Double Delta Correlator (DDC) techniques, especially the medium/long delay multipath signals, and it is also convenient and flexible to implement by using only one correlator, which is the case of low-cost mass-market receivers

    GPS Multipath Detection in the Frequency Domain

    Full text link
    Multipath is among the major sources of errors in precise positioning using GPS and continues to be extensively studied. Two Fast Fourier Transform (FFT)-based detectors are presented in this paper as GPS multipath detection techniques. The detectors are formulated as binary hypothesis tests under the assumption that the multipath exists for a sufficient time frame that allows its detection based on the quadrature arm of the coherent Early-minus-Late discriminator (Q EmL) for a scalar tracking loop (STL) or on the quadrature (Q EmL) and/or in-phase arm (I EmL) for a vector tracking loop (VTL), using an observation window of N samples. Performance analysis of the suggested detectors is done on multipath signal data acquired from the multipath environment simulator developed by the German Aerospace Centre (DLR) as well as on multipath data from real GPS signals. Application of the detection tests to correlator outputs of scalar and vector tracking loops shows that they may be used to exclude multipath contaminated satellites from the navigation solution. These detection techniques can be extended to other Global Navigation Satellite Systems (GNSS) such as GLONASS, Galileo and Beidou.Comment: 2016 European Navigation Conference (ENC 2016), May 2016, Helsinki, Finland. Proceedings of the 2016 European Navigation Conference (ENC 2016

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements

    Benchmarking CPUs and GPUs on embedded platforms for software receiver usage

    Get PDF
    Smartphones containing multi-core central processing units (CPUs) and powerful many-core graphics processing units (GPUs) bring supercomputing technology into your pocket (or into our embedded devices). This can be exploited to produce power-efficient, customized receivers with flexible correlation schemes and more advanced positioning techniques. For example, promising techniques such as the Direct Position Estimation paradigm or usage of tracking solutions based on particle filtering, seem to be very appealing in challenging environments but are likewise computationally quite demanding. This article sheds some light onto recent embedded processor developments, benchmarks Fast Fourier Transform (FFT) and correlation algorithms on representative embedded platforms and relates the results to the use in GNSS software radios. The use of embedded CPUs for signal tracking seems to be straight forward, but more research is required to fully achieve the nominal peak performance of an embedded GPU for FFT computation. Also the electrical power consumption is measured in certain load levels.Peer ReviewedPostprint (published version

    Simulation of Multi-element Antenna Systems for Navigation Applications

    Get PDF
    The application of user terminals with multiple antenna inputs for use with the global satellite navigation systems like GPS and Galileo becomes more and more attraction in last years. Multiple antennas may be spread over the user platform and provide signals required for the platform attitude estimation or may be arranged in an antenna array to be used together with array processing algorithms for improving signal reception, e.g. for multipath and interference mitigation. In order to generate signals for testing of receivers with multiple antenna inputs and corresponding receiver algorithms in a laboratory environment a unique HW signal simulation tool for wavefront simulation has been developed. The signals for a number of antenna elements in a flexible user defined geometry are first generated as digital signals in baseband and then mixed up to individual RF-outputs. The paper describes the principle function of the system and addresses some calibration issues. Measurement set-ups and results of data processing with simulated signals for different applications are shown and discussed

    Analysis and Detection of Outliers in GNSS Measurements by Means of Machine Learning Algorithms

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen
    • 

    corecore