207 research outputs found

    Resource Allocation in Relay Enhanced Broadband Wireless Access Networks

    Get PDF
    The use of relay nodes to improve the performance of broadband wireless access (BWA) networks has been the subject of intense research activities in recent years. Relay enhanced BWA networks are anticipated to support multimedia traffic (i.e., voice, video, and data traffic). In order to guarantee service to network users, efficient resource distribution is imperative. Wireless multihop networks are characterized by two inherent dynamic characteristics: 1) the existence of wireless interference and 2) mobility of user nodes. Both mobility and interference greatly influence the ability of users to obtain the necessary resources for service. In this dissertation we conduct a comprehensive research study on the topic of resource allocation in the presence of interference and mobility. Specifically, this dissertation investigates the impact interference and mobility have on various aspects of resource allocation, ranging from fairness to spectrum utilization. We study four important resource allocation algorithms for relay enhanced BWA networks. The problems and our research achievements are briefly outlined as follows. First, we propose an interference aware rate adaptive subcarrier and power allocation algorithm using maximum multicommodity flow optimization. We consider the impact of the wireless interference constraints using Signal to Interference Noise Ratio (SINR). We exploit spatial reuse to allocate subcarriers in the network and show that an intelligent reuse of resources can improve throughput while mitigating the impact of interference. We provide a sub-optimal heuristic to solve the rate adaptive resource allocation problem. We demonstrate that aggressive spatial reuse and fine tuned-interference modeling garner advantages in terms of throughput, end-to-end delay and power distribution. Second, we investigate the benefits of decoupled optimization of interference aware routing and scheduling using SINR and spatial reuse to improve the overall achievable throughput. We model the routing optimization problem as a linear program using maximum concurrent flows. We develop an optimization formulation to schedule the link traffic such that interference is mitigated and time slots are reused appropriately based on spatial TDMA (STDMA). The scheduling problem is shown to be NP-hard and is solved using the column generation technique. We compare our formulations to conventional counterparts in the literature and show that our approach guarantees higher throughput by mitigating the effect of interference effectively. Third, we investigate the problem of multipath flow routing and fair bandwidth allocation under interference constraints for multihop wireless networks. We first develop a novel isotonic routing metric, RI3M, considering the influence of interflow and intraflow interference. Second, in order to ensure QoS, an interference-aware max-min fair bandwidth allocation algorithm, LMX:M3F, is proposed where the lexicographically largest bandwidth allocation vector is found among all optimal allocation vectors while considering constraints of interference on the flows. We compare with various interference based routing metrics and interference aware bandwidth allocation algorithms established in the literature to show that RI3M and LMX:M3F succeed in improving network performance in terms of delay, packet loss ratio and bandwidth usage. Lastly, we develop a user mobility prediction model using the Hidden Markov Model(HMM) in which prediction control is transferred to the various fixed relay nodes in the network. Given the HMM prediction model, we develop a routing protocol which uses the location information of the mobile user to determine the interference level on links in its surrounding neighborhood. We use SINR as the routing metric to calculate the interference on a specific link (link cost). We minimize the total cost of routing as a cost function of SINR while guaranteeing that the load on each link does not exceed its capacity. The routing protocol is formulated and solved as a minimum cost flow optimization problem. We compare our SINR based routing algorithm with conventional counterparts in the literature and show that our algorithm reinforces routing paths with high link quality and low latency, therefore improving overall system throughput. The research solutions obtained in this dissertation improve the service reliability and QoS assurance of emerging BWA networks

    Resource allocation in WiMAX mesh networks

    Get PDF
    ix, 77 leaves : ill. ; 29 cmThe IEEE 802.16 standard popularly known as WiMAX is at the forefront of the technological drive. Achieving high system throughput in these networks is challenging due to interference which limits concurrent transmissions. In this thesis, we study routing and link scheduling inWiMAX mesh networks. We present simple joint routing and link scheduling algorithms that have outperformed most of the existing proposals in our experiments. Our session based routing and links scheduling produced results approximately 90% of a trivial lower bound. We also study the problem of quality of service (QoS) provisioning in WiMAX mesh networks. QoS has become an attractive area of study driven by the increasing demand for multimedia content delivered wirelessly. To accommodate the different applications, the IEEE 802.16 standard defines four classes of service. In this dissertation, we propose a comprehensive scheme consisting of routing, link scheduling, call admission control (CAC) and channel assignment that considers all classes of service. Much of the work in the literature considers each of these problems in isolation. Our routing schemes use a metric that combines interference and traffic load to compute routes for requests while our link scheduling ensures that the QoS requirements of admitted requests are strictly met. Results from our simulation indicate that our routing and link scheduling schemes significantly improve network performance when the network is congested

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    QoS constrained cellular ad hoc augmented networks

    Get PDF
    In this dissertation, based on different design criteria, three novel quality of service (QoS) constrained cellular ad hoc augmented network (CAHAN) architectures are proposed for next generation wireless networks. The CAHAN architectures have a hybrid architecture, in which each MT of CDMA cellular networks has ad hoc communication capability. The CAHAN architectures are an evolutionary approach to conventional cellular networks. The proposed architectures have good system scalability and high system reliability. The first proposed architecture is the QoS constrained minimum-power cellular ad hoc augmented network architecture (QCMP CAHAN). The QCMP CAHAN can find the optimal minimum-power routes under the QoS constraints (bandwidth, packet-delay, or packet-error-rate constraint). The total energy consumed by the MTs is lower in the case of QCMP CAHAN than in the case of pure cellular networks. As the ad hoc communication range of each MT increases, the total transmitted power in QCMP CAHAN decreases. However, due to the increased number of hops involved in information delivery between the source and the destination, the end-to-end delay increases. The maximum end-to-end delay will be limited to a specified tolerable value for different services. An MT in QCMP CAHAN will not relay any messages when its ad hoc communication range is zero, and if this is the case for all MTs, then QCMP CAHAN reduces to the traditional cellular network. A QoS constrained network lifetime extension cellular ad hoc augmented network architecture (QCLE CAHAN) is proposed to achieve the maximum network lifetime under the QoS constraints. The network lifetime is higher in the case of QCLE CAHAN than in the case of pure cellular networks or QCMP CAHAN. In QCLE CAHAN, a novel QoS-constrained network lifetime extension routing algorithm will dynamically select suitable ad-hoc-switch-to-cellular points (ASCPs) according to the MT remaining battery energy such that the selection will balance all the MT battery energy and maximizes the network lifetime. As the number of ASCPs in an ad hoc subnet decreases, the network lifetime will be extended. Maximum network lifetime can be increased until the end-to-end QoS in QCLE CAHAN reaches its maximum tolerable value. Geocasting is the mechanism to multicast messages to the MTs whose locations lie within a given geographic area (target area). Geolocation-aware CAHAN (GA CAHAN) architecture is proposed to improve total transmitted power expended for geocast services in cellular networks. By using GA CAHAN for geocasting, saving in total transmitted energy can be achieved as compared to the case of pure cellular networks. When the size of geocast target area is large, GA CAHAN can save larger transmitted energy

    Minimize end-to-end delay through cross-layer optimization in multi-hop wireless sensor networks

    Get PDF
    End-to-end delay plays a very important role in wireless sensor networks. It refers to the total time taken for a single packet to be transmitted across a network from source to destination. There are many factors could affect the end-to-end delay, among them the routing path and the interference level along the path are the two basic elements that could have significant influence on the result of the end-to-end delay. This thesis presents a transmission scheduling scheme that minimizes the end-to-end delay when the node topology is given. The transmission scheduling scheme is designed based on integer linear programming and the interference modeling is involved. By using this scheme, we can guarantee that no conflicting transmission will appear at any time during the transmission. A method of assigning the time slot based on the given routing is presented. The simulation results show that the link scheduling scheme can significantly reduce the end-to-end delay. Further, this article also shows two methods which could directly addresses routing and slot assignment, one is MI+MinDelay algorithm and the other is called One-Phase algorithm. A comparison was made between the two and the simulation result shows the latter one leads to smaller latency while it takes much more time to be solved. Besides, due to the different routing policy, we also demonstrate that the shortest path routing does not necessarily result in minimum end-to-end delay --Abstract, page ii

    Cross-layer design for network performance optimization in wireless networks

    Get PDF
    In this dissertation, I use mathematical optimization approach to solve the complex network problems. Paper l and paper 2 first show that ignoring the bandwidth constraint can lead to infeasible routing solutions. A sufficient condition on link bandwidth is proposed that makes a routing solution feasible, and then a mathematical optimization model based on this sufficient condition is provided. Simulation results show that joint optimization models can provide more feasible routing solutions and provide significant improvement on throughput and lifetime. In paper 3 and paper 4, an interference model is proposed and a transmission scheduling scheme is presented to minimize the end-to-end delay. This scheduling scheme is designed based on integer linear programming and involves interference modeling. Using this schedule, there are no conflicting transmissions at any time. Through simulation, it shows that the proposed link scheduling scheme can significantly reduce end-to-end latency. Since to compute the maximum throughput is an NP-hard problem, efficient heuristics are presented in Paper 5 that use sufficient conditions instead of the computationally-expensive-to-get optimal condition to capture the mutual conflict relation in a collision domain. Both one-way transmission and two-way transmission are considered. Simulation results show that the proposed algorithms improve network throughput and reduce energy consumption, with significant improvement over previous work on both aspects. Paper 6 studies the complicated tradeoff relation among multiple factors that affect the sensor network lifetime and proposes an adaptive multi-hop clustering algorithm. It realizes the best tradeoff among multiple factors and outperforms others that do not. It is adaptive in the sense the clustering topology changes over time in order to have the maximum lifetime --Abstract, page iv

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore