792 research outputs found

    Multipath Key Establishment for Wireless Sensor Networks Using Just-Enough Redundancy Transmission

    Get PDF
    In random key predistribution techniques for wireless sensor networks, a relatively small number of keys are randomly chosen from a large key pool and are loaded on the sensors prior to deployment. After deployment, each sensor tries finding a common key shared by itself and each of its neighbors to establish a link key to protect the wireless communication between themselves. One intrinsic disadvantage of such techniques is that some neighboring sensors do not share any common key. In order to establish a link key among these neighbors, a multihop secure path may be used to deliver the secret. Unfortunately, the possibility of sensors being compromised on the path may render such an establishment process insecure. In this work, we propose and analyze the Just-Enough Redundancy Transmission (JERT) scheme that uses the powerful Maximum-Distance Separable (MDS) codes to address the problem. In the JERT scheme, the secret link key is encoded in (n, k) MDS code and transmitted through multiple multihop paths. To reduce the total information that needs to be transmitted, the redundant symbols of the MDS codes are transmitted only if the destination fails to decode the secret. The JERT scheme is demonstrated to be efficient and resilient against node capture. One salient feature of the JERT scheme is its flexibility of trading transmission for lower information disclosure

    Selecting source image sensor nodes based on 2-hop information to improve image transmissions to mobile robot sinks in search \& rescue operations

    Full text link
    We consider Robot-assisted Search &\& Rescue operations enhanced with some fixed image sensor nodes capable of capturing and sending visual information to a robot sink. In order to increase the performance of image transfer from image sensor nodes to the robot sinks we propose a 2-hop neighborhood information-based cover set selection to determine the most relevant image sensor nodes to activate. Then, in order to be consistent with our proposed approach, a multi-path extension of Greedy Perimeter Stateless Routing (called T-GPSR) wherein routing decisions are also based on 2-hop neighborhood information is proposed. Simulation results show that our proposal reduces packet losses, enabling fast packet delivery and higher visual quality of received images at the robot sink

    A Secure Cluster-Based Multipath Routing Protocol for WMSNs

    Get PDF
    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption

    Lifenet: a flexible ad hoc networking solution for transient environments

    Get PDF
    In the wake of major disasters, the failure of existing communications infrastructure and the subsequent lack of an effective communication solution results in increased risks, inefficiencies, damage and casualties. Currently available options such as satellite communication are expensive and have limited functionality. A robust communication solution should be affordable, easy to deploy, require little infrastructure, consume little power and facilitate Internet access. Researchers have long proposed the use of ad hoc wireless networks for such scenarios. However such networks have so far failed to create any impact, primarily because they are unable to handle network transience and have usability constraints such as static topologies and dependence on specific platforms. LifeNet is a WiFi-based ad hoc data communication solution designed for use in highly transient environments. After presenting the motivation, design principles and key insights from prior literature, the dissertation introduces a new routing metric called Reachability and a new routing protocol based on it, called Flexible Routing. Roughly speaking, reachability measures the end-to-end multi-path probability that a packet transmitted by a source reaches its final destination. Using experimental results, it is shown that even with high transience, the reachability metric - (1) accurately captures the effects of transience (2) provides a compact and eventually consistent global network view at individual nodes, (3) is easy to calculate and maintain and (4) captures availability. Flexible Routing trades throughput for availability and fault-tolerance and ensures successful packet delivery under varying degrees of transience. With the intent of deploying LifeNet on field we have been continuously interacting with field partners, one of which is Tata Institute of Social Sciences India. We have refined LifeNet iteratively refined base on their feedback. I conclude the thesis with lessons learned from our field trips so far and deployment plans for the near future.MSCommittee Chair: Santosh Vempala; Committee Member: Ashok Jhunjhunwala; Committee Member: Michael Best; Committee Member: Nick Feamste

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures
    corecore