515 research outputs found

    On The Recovery Performance of Single- and Multipath OLSR in Wireless Multi-Hop Networks

    Get PDF
    International audienceIn this paper, we study and improve the recovery properties of single and multipath routing strategies when facing network failure situations. In particular, we focus our study on two MANET routing protocols: OLSR and its multipath extension MP-OLSR. In various wireless multi-hop network environments, especially in multiple chain topologies, we define and seek to evaluate the latency introduced by these protocols to find a new path after a link failure. Theoretical estimations and simulation results show that, under dual chain-topologies, this latency can be too long and incompatible with the needs of loss and delay constrained applications. As the source nodes cannot detect link failures immediately because of the delay incurred by the well-known nature of link state protocols in general, and of OLSR Topology Control (TC) messages in particular, these nodes keep sending packets along broken paths. We thus study the inconsistencies between the actual network topology and the nodes' own representation. After analyzing the consequences of this long latency, we seek to alleviate these problems with the introduction of adapted mechanisms. We propose three new different schemes and accordingly extend the original OLSR and MP-OLSR protocols in order to decrease the expected latency and improve the protocol performance. Simulation results show a steep decrease of the latency when using these new schemes in dual chain-topologies. We also discuss these results in terms of packet loss, end-to-end delay and overhead

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Exact Distributed Load Centrality Computation: Algorithms, Convergence, and Applications to Distance Vector Routing

    Get PDF
    Many optimization techniques for networking protocols take advantage of topological information to improve performance. Often, the topological information at the core of these techniques is a centrality metric such as the Betweenness Centrality (BC) index. BC is, in fact, a centrality metric with many well-known successful applications documented in the literature, from resource allocation to routing. To compute BC, however, each node must run a centralized algorithm and needs to have the global topological knowledge; such requirements limit the feasibility of optimization procedures based on BC. To overcome restrictions of this kind, we present a novel distributed algorithm that requires only local information to compute an alternative similar metric, called Load Centrality (LC). We present the new algorithm together with a proof of its convergence and the analysis of its time complexity. The proposed algorithm is general enough to be integrated with any distance vector (DV) routing protocol. In support of this claim, we provide an implementation on top of Babel, a real-world DV protocol. We use this implementation in an emulation framework to show how LC can be exploited to reduce Babel's convergence time upon node failure, without increasing control overhead. As a key step towards the adoption of centrality-based optimization for routing, we study how the algorithm can be incrementally introduced in a network running a DV routing protocol. We show that even when only a small fraction of nodes participate in the protocol, the algorithm accurately ranks nodes according to their centrality

    Routing Protocols in Wireless Sensor Networks

    Get PDF
    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks

    BGP-XM: BGP eXtended Multipath for Transit Autonomous Systems

    Get PDF
    Multipath interdomain routing has been proposed to enable flexible traffic engineering for transit Autonomos Systems (ASes). Yet, there is a lack of solutions providing maximal path diversity and backwards compatibility at the same time. The BGP-XM (Border Gateway Protocol-eXtended Multipath) extension presented in this paper is a complete and flexible approach to solve many of the limitations of previous BGP multipath solutions. ASes can benefit from multipath capabilities starting with a single upgraded router, and without any coordination with other ASes. BGP-XM defines an algorithm to merge into regular BGP updates information from paths which may even traverse different ASes. This algorithm can be combined with different multipath selection algorithms, such as the K-BESTRO (K-Best Route Optimizer) tunable selection algorithm proposed in this paper. A stability analysis and stable policy guidelines are provided. The performance evaluation of BGP-XM, running over an Internet-like topology, shows that high path diversity can be achieved even for limited deployments of the multipath mechanism. Further results for large-scale deployments reveal that the extension is suitable for large deployment since it shows a low impact in the AS path length and in the routing table size

    Performance Enhancement of Channel Estimation Technique in Broadcast and Multicast Mode

    Get PDF
    In this paper we presented the enhanced method of channel estimation to deliver data over internet. The enhanced channel estimation method has to improve the wireless standard under orthogonal frequency division multiplexing (OFDM). The OFDM technique was allow the clients to be transmitted data simultaneously. The proposed enhanced method requires a slight change on full duplex method but still provides the end to end connectivity towards different nodes. Furthermore, the proposed method felt the knowledge of multicast groups and we do not concentrate on broadcasting concept. The multicast group selection and node electionwill be extendingour work. This method also retain the regressive compatibility and to attaining the better transmission. In addition, enhanced method to be monitored the packet flow, drop packet detail and number of transmitted/received packets. The paper does study the profound analysis of standard parameters that helps to explore this research with predefined parameters like throughput and delay

    Dtn and non-dtn routing protocols for inter-cubesat communications: A comprehensive survey

    Get PDF
    CubeSats, which are limited by size and mass, have limited functionality. These miniaturised satellites suffer from a low power budget, short radio range, low transmission speeds, and limited data storage capacity. Regardless of these limitations, CubeSats have been deployed to carry out many research missions, such as gravity mapping and the tracking of forest fires. One method of increasing their functionality and reducing their limitations is to form CubeSat networks, or swarms, where many CubeSats work together to carry out a mission. Nevertheless, the network might have intermittent connectivity and, accordingly, data communication becomes challenging in such a disjointed network where there is no contemporaneous path between source and destination due to satellites’ mobility pattern and given the limitations of range. In this survey, various inter-satellite routing protocols that are Delay Tolerant (DTN) and Non Delay Tolerant (Non-DTN) are considered. DTN routing protocols are considered for the scenarios where the network is disjointed with no contemporaneous path between a source and a destination. We qualitatively compare all of the above routing protocols to highlight the positive and negative points under different network constraints. We conclude that the performance of routing protocols used in aerospace communications is highly dependent on the evolving topology of the network over time. Additionally, the Non-DTN routing protocols will work efficiently if the network is dense enough to establish reliable links between CubeSats. Emphasis is also given to network capacity in terms of how buffer, energy, bandwidth, and contact duration influence the performance of DTN routing protocols, where, for example, flooding-based DTN protocols can provide superior performance in terms of maximizing delivery ratio and minimizing a delivery delay. However, such protocols are not suitable for CubeSat networks, as they harvest the limited resources of these tiny satellites and they are contrasted with forwarding-based DTN routing protocols, which are resource-friendly and produce minimum overheads on the cost of degraded delivery probability. From the literature, we found that quota-based DTN routing protocols can provide the necessary balance between delivery delay and overhead costs in many CubeSat missions

    Self-organized backpressure routing for the wireless mesh backhaul of small cells

    Get PDF
    The ever increasing demand for wireless data services has given a starring role to dense small cell (SC) deployments for mobile networks, as increasing frequency re-use by reducing cell size has historically been the most effective and simple way to increase capacity. Such densification entails challenges at the Transport Network Layer (TNL), which carries packets throughout the network, since hard-wired deployments of small cells prove to be cost-unfeasible and inflexible in some scenarios. The goal of this thesis is, precisely, to provide cost-effective and dynamic solutions for the TNL that drastically improve the performance of dense and semi-planned SC deployments. One approach to decrease costs and augment the dynamicity at the TNL is the creation of a wireless mesh backhaul amongst SCs to carry control and data plane traffic towards/from the core network. Unfortunately, these lowcost SC deployments preclude the use of current TNL routing approaches such as Multiprotocol Label Switching Traffic Profile (MPLS-TP), which was originally designed for hard-wired SC deployments. In particular, one of the main problems is that these schemes are unable to provide an even network resource consumption, which in wireless environments can lead to a substantial degradation of key network performance metrics for Mobile Network Operators. The equivalent of distributing load across resources in SC deployments is making better use of available paths, and so exploiting the capacity offered by the wireless mesh backhaul formed amongst SCs. To tackle such uneven consumption of network resources, this thesis presents the design, implementation, and extensive evaluation of a self-organized backpressure routing protocol explicitly designed for the wireless mesh backhaul formed amongst the wireless links of SCs. Whilst backpressure routing in theory promises throughput optimality, its implementation complexity introduces several concerns, such as scalability, large end-to-end latencies, and centralization of all the network state. To address these issues, we present a throughput suboptimal yet scalable, decentralized, low-overhead, and low-complexity backpressure routing scheme. More specifically, the contributions in this thesis can be summarized as follows: We formulate the routing problem for the wireless mesh backhaul from a stochastic network optimization perspective, and solve the network optimization problem using the Lyapunov-driftplus-penalty method. The Lyapunov drift refers to the difference of queue backlogs in the network between different time instants, whereas the penalty refers to the routing cost incurred by some network utility parameter to optimize. In our case, this parameter is based on minimizing the length of the path taken by packets to reach their intended destination. Rather than building routing tables, we leverage geolocation information as a key component to complement the minimization of the Lyapunov drift in a decentralized way. In fact, we observed that the combination of both components helps to mitigate backpressure limitations (e.g., scalability,centralization, and large end-to-end latencies). The drift-plus-penalty method uses a tunable optimization parameter that weight the relative importance of queue drift and routing cost. We find evidence that, in fact, this optimization parameter impacts the overall network performance. In light of this observation, we propose a self-organized controller based on locally available information and in the current packet being routed to tune such an optimization parameter under dynamic traffic demands. Thus, the goal of this heuristically built controller is to maintain the best trade-off between the Lyapunov drift and the penalty function to take into account the dynamic nature of semi-planned SC deployments. We propose low complexity heuristics to address problems that appear under different wireless mesh backhaul scenarios and conditions..

    Review of Wireless Sensor Networks

    Get PDF
    This article presents a study of the state of the art of sensor networks wireless systems, which continue to develop and present a wide variety of Applications. These networks constitute a current and emerging field of study where combines the development of computers, wireless communications and devices mobile phones and integration with other disciplines such as agriculture, biology, medicine, etc. I know presents the main concept, components, topologies, standards, applications, problems and challenges, then delves into security solutions and concludes with basic simulation tools
    • …
    corecore