4,912 research outputs found

    Multipath Parameter Estimation from OFDM Signals in Mobile Channels

    Full text link
    We study multipath parameter estimation from orthogonal frequency division multiplex signals transmitted over doubly dispersive mobile radio channels. We are interested in cases where the transmission is long enough to suffer time selectivity, but short enough such that the time variation can be accurately modeled as depending only on per-tap linear phase variations due to Doppler effects. We therefore concentrate on the estimation of the complex gain, delay and Doppler offset of each tap of the multipath channel impulse response. We show that the frequency domain channel coefficients for an entire packet can be expressed as the superimposition of two-dimensional complex sinusoids. The maximum likelihood estimate requires solution of a multidimensional non-linear least squares problem, which is computationally infeasible in practice. We therefore propose a low complexity suboptimal solution based on iterative successive and parallel cancellation. First, initial delay/Doppler estimates are obtained via successive cancellation. These estimates are then refined using an iterative parallel cancellation procedure. We demonstrate via Monte Carlo simulations that the root mean squared error statistics of our estimator are very close to the Cramer-Rao lower bound of a single two-dimensional sinusoid in Gaussian noise.Comment: Submitted to IEEE Transactions on Wireless Communications (26 pages, 9 figures and 3 tables

    Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression

    Get PDF
    This paper proposes a multistage decomposition for blind adaptive parameter estimation in the Krylov subspace with the code-constrained constant modulus (CCM) design criterion. Based on constrained optimization of the constant modulus cost function and utilizing the Lanczos algorithm and Arnoldi-like iterations, a multistage decomposition is developed for blind parameter estimation. A family of computationally efficient blind adaptive reduced-rank stochastic gradient (SG) and recursive least squares (RLS) type algorithms along with an automatic rank selection procedure are also devised and evaluated against existing methods. An analysis of the convergence properties of the method is carried out and convergence conditions for the reduced-rank adaptive algorithms are established. Simulation results consider the application of the proposed techniques to the suppression of multiaccess and intersymbol interference in DS-CDMA systems

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine
    • …
    corecore