643 research outputs found

    Robustness of Entanglement as a Resource

    Full text link
    The robustness of multipartite entanglement of systems undergoing decoherence is of central importance to the area of quantum information. Its characterization depends however on the measure used to quantify entanglement and on how one partitions the system. Here we show that the unambiguous assessment of the robustness of multipartite entanglement is obtained by considering the loss of functionality in terms of two communication tasks, namely the splitting of information between many parties and the teleportation of states.Comment: 11 pages, 5 figure

    Decoherence and multipartite entanglement

    Full text link
    We study the dynamics of multipartite entanglement under the influence of decoherence. A suitable generalization of concurrence reveals distinct scaling of the entanglement decay rate of GHZ and W states, for various environments.Comment: 4 pages, 2 figures, accepted for publication in Phys. Rev. Let

    Effects of Collisional Decoherence on Multipartite Entanglement - How would entanglement not be relatively common?

    Full text link
    We consider the collision model of Ziman {\em et al.} and study the robustness of NN-qubit Greenberger-Horne-Zeilinger (GHZ), W, and linear cluster states. Our results show that NN-qubit entanglement of GHZ states would be extremely fragile under collisional decoherence, and that of W states could be more robust than of linear cluster states. We indicate that the collision model of Ziman {\em et al.} could provide a physical mechanism to some known results in this area of investigations. More importantly, we show that it could give a clue as to how NN-partite distillable entanglement would be relatively rare in our macroscopic classical world.Comment: 10 page

    Measures and dynamics of entangled states

    Full text link
    We develop an original approach for the quantitative characterisation of the entanglement properties of, possibly mixed, bi- and multipartite quantum states of arbitrary finite dimension. Particular emphasis is given to the derivation of reliable estimates which allow for an efficient evaluation of a specific entanglement measure, concurrence, for further implementation in the monitoring of the time evolution of multipartite entanglement under incoherent environment coupling. The flexibility of the technical machinery established here is illustrated by its implementation for different, realistic experimental scenarios.Comment: Physics Reports, in pres
    corecore