40 research outputs found

    Adaptive Detection of Instabilities: An Experimental Feasibility Study

    Full text link
    We present an example of the practical implementation of a protocol for experimental bifurcation detection based on on-line identification and feedback control ideas. The idea is to couple the experiment with an on-line computer-assisted identification/feedback protocol so that the closed-loop system will converge to the open-loop bifurcation points. We demonstrate the applicability of this instability detection method by real-time, computer-assisted detection of period doubling bifurcations of an electronic circuit; the circuit implements an analog realization of the Roessler system. The method succeeds in locating the bifurcation points even in the presence of modest experimental uncertainties, noise and limited resolution. The results presented here include bifurcation detection experiments that rely on measurements of a single state variable and delay-based phase space reconstruction, as well as an example of tracing entire segments of a codimension-1 bifurcation boundary in two parameter space.Comment: 29 pages, Latex 2.09, 10 figures in encapsulated postscript format (eps), need psfig macro to include them. Submitted to Physica

    Digital Multimode Buck Converter Control With Loss-Minimizing Synchronous Rectifier Adaptation

    Full text link

    Model-Guided Data-Driven Optimization and Control for Internal Combustion Engine Systems

    Get PDF
    The incorporation of electronic components into modern Internal Combustion, IC, engine systems have facilitated the reduction of fuel consumption and emission from IC engine operations. As more mechanical functions are being replaced by electric or electronic devices, the IC engine systems are becoming more complex in structure. Sophisticated control strategies are called in to help the engine systems meet the drivability demands and to comply with the emission regulations. Different model-based or data-driven algorithms have been applied to the optimization and control of IC engine systems. For the conventional model-based algorithms, the accuracy of the applied system models has a crucial impact on the quality of the feedback system performance. With computable analytic solutions and a good estimation of the real physical processes, the model-based control embedded systems are able to achieve good transient performances. However, the analytic solutions of some nonlinear models are difficult to obtain. Even if the solutions are available, because of the presence of unavoidable modeling uncertainties, the model-based controllers are designed conservatively

    Microarcsecond VLBI pulsar astrometry with PSRπ\pi II. parallax distances for 57 pulsars

    Full text link
    We present the results of PSRπ\pi, a large astrometric project targeting radio pulsars using the Very Long Baseline Array (VLBA). From our astrometric database of 60 pulsars, we have obtained parallax-based distance measurements for all but 3, with a parallax precision of typically 40 μ\muas and approaching 10 μ\muas in the best cases. Our full sample doubles the number of radio pulsars with a reliable (\gtrsim5σ\sigma) model-independent distance constraint. Importantly, many of the newly measured pulsars are well outside the solar neighbourhood, and so PSRπ\pi brings a near-tenfold increase in the number of pulsars with a reliable model-independent distance at d>2d>2 kpc. Using our sample along with previously published results, we show that even the most recent models of the Galactic electron density distribution model contain significant shortcomings, particularly at high Galactic latitudes. When comparing our results to pulsar timing, two of the four millisecond pulsars in our sample exhibit significant discrepancies in the estimates of proper motion obtained by at least one pulsar timing array. With additional VLBI observations to improve the absolute positional accuracy of our reference sources and an expansion of the number of millisecond pulsars, we will be able to extend the comparison of proper motion discrepancies to a larger sample of pulsar reference positions, which will provide a much more sensitive test of the applicability of the solar system ephemerides used for pulsar timing. Finally, we use our large sample to estimate the typical accuracy attainable for differential astrometry with the VLBA when observing pulsars, showing that for sufficiently bright targets observed 8 times over 18 months, a parallax uncertainty of 4 μ\muas per arcminute of separation between the pulsar and calibrator can be expected.Comment: updated to version accepted by ApJ: 30 pages, 20 figures, 9 table

    Aeronautical Engineering: A special bibliography, supplement 60

    Get PDF
    This bibliography lists 284 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1975

    Simulation assisted performance optimization of large-scale multiparameter technical systems

    Get PDF
    During the past two decades the role of dynamic process simulation within the research and development work of process and control solutions has grown tremendously. As the simulation assisted working practices have become more and more popular, also the accuracy requirements concerning the simulation results have tightened. The accuracy improvement of complex, plant-wide models via parameter tuning necessitates implementing practical, scalable methods and tools operating on the correct level of abstraction. In modern integrated process plants, it is not only the performance of individual controllers but also their interactions that determine the overall performance of the large-scale control systems. However, in practice it has become customary to split large-scale problems into smaller pieces and to use traditional analytical control engineering approaches, which inevitably end in suboptimal solutions. The performance optimization problems related to large control systems and to plant-wide process models are essentially connected in the context of new simulation assisted process and control design practices. The accuracy of the model that is obtained with data-based parameter tuning determines the quality of the simulation assisted controller tuning results. In this doctoral thesis both problems are formulated in the same framework depicted in the title of the thesis. To solve the optimization problem, a novel method called Iterative Regression Tuning (IRT) applying numerical optimization and multivariate regression is presented. IRT method has been designed especially for large-scale systems and it allows the incorporation of domain area expertise into the optimization goals. The thesis introduces different variations on the IRT method, technical details related to their application and various use cases of the algorithm. The simulation assisted use case is presented through a number of application examples of control performance and model accuracy optimization
    corecore