221 research outputs found

    Multiobjective solution of the uncapacitated plant location problem

    Get PDF
    In this paper we consider the discrete multiobjective uncapacitated plant location problem. We present an exact and an approximate approach to obtain the set of non-dominated solutions. The two approaches resort to dynamic programming to generate in an efficient way the non-dominated solution sets. The solution methods that solve the problems associated with the generated states are based on the decomposition of the problem on two nested subproblems. We define lower and upper bound sets that lead to elimination tests that have shown to have a high performance. Computational experiments on a set of test problems show the good performance of the proposal

    A Discrete Particle Swarm Optimization Algorithm for Bi-Criteria Warehouse Location Problem

    Get PDF
    The uncapacitated warehouse location problem (UWLP) is one of the widely studied discrete location problems, in which the nodes (customers) are connected to a number (w) of warehouses in such a way that the total cost, yields from the dissimilarities (distances) and from the fixed costs of the warehouses is minimized. Despite w is considered as fixed integer number, the UWLP is NP-hard. If the UWLP has two or more objective functions and w is an integer variable, the UWLP becomes more complex. Large size of this kind of complex problems can be solved by using heuristic algorithms or artificial intelligent techniques. It’s shown that Particle Swarm Optimization (PSO) which is one of the technique of artificial intelligent techniques, has achieved a notable success for continuous optimization, however, PSO implementations and applications for combinatorial optimization are still active research area that to the best of our knowledge fewer studies have been carried out on this topic. In this study, the bi-criteria UWLP of minimizing the total distance and total opening cost of warehouses. is presented and it’s shown that promising results are obtained.Warehouse Location Problem, Particle Swarm Optimization, Discrete Location Problems, Bi-criteria.

    Network Flexibility for Recourse Considerations in Bi-Criteria Facility Location

    Get PDF
    What is the best set of facility location decisions for the establishment of a logistics network when it is uncertain how a company’s distribution strategy will evolve? What is the best configuration of a distribution network that will most likely have to be altered in the future? Today’s business environment is turbulent, and operating conditions for firms can take a turn for the worse at any moment. This fact can and often does influence companies to occasionally expand or contract their distribution networks. For most companies operating in this chaotic business environment, there is a continuous struggle between staying cost efficient and supplying adequate service. Establishing a distribution network which is flexible or easily adaptable is the key to survival under these conditions. This research begins to address the problem of locating facilities in a logistics network in the face of an evolving strategic focus through the implicit consideration of the uncertainty of parameters. The trade-off of cost and customer service is thoroughly examined in a series of multi-criteria location problems. Modeling techniques for incorporating service restrictions for facility location in strategic network design are investigated. A flexibility metric is derived for the purposes of quantifying the similarity of a set of non-dominated solutions in strategic network design. Finally, a multi-objective greedy random adaptive search (MOG) metaheuristic is applied to solve a series of bi-criteria, multi-level facility location problems

    Location models in the public sector

    Get PDF
    The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.Location analysis, public facilities, covering models

    Interactive Multicriteria Approach to Facility Location-Allocation Models Under Stochastic Demand

    Get PDF
    Industrial Engineering and Managemen

    A multi-objective, hub-and-spoke model to design and manage biofuel supply chains

    Get PDF
    In this paper we propose a multi-objective, mixed integer linear programming model to design and manage the supply chain for biofuels. This model captures the trade-offs that exist between costs, environmental and social impacts of delivering biofuels. The in-bound supply chain for biofuel plants relies on a hub-and-spoke structure which optimizes transportation costs of biomass. The model proposed optimizes the CO2 style= position: relative; tabindex= 0 id= MathJax-Element-1-Frame \u3eCO2 emissions due to transportation-related activities in the supply chain. The model also optimizes the social impact of biofuels. The social impacts are evaluated by the number of jobs created. The multi-objective optimization model is solved using an augmented ϵ style= position: relative; tabindex= 0 id= MathJax-Element-2-Frame \u3eϵ-constraint method. The method provides a set of Pareto optimal solutions. We develop a case study using data from the Midwest region of the USA. The numerical analyses estimates the quantity and cost of cellulosic ethanol delivered under different scenarios generated. The insights we provide will help policy makers design policies which encourage and support renewable energy production

    A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling

    Get PDF
    We propose an efficient evolutionary multi-objective optimization approach to the capacitated facility location–allocation problem (CFLP) for solving large instances that considers flexibility at the allocation level, where financial costs and CO2 emissions are considered simultaneously. Our approach utilizes suitably adapted Lagrangian Relaxation models for dealing with costs and CO2 emissions at the allocation level, within a multi-objective evolutionary framework at the location level. Thus our method assesses the robustness of each location solution with respect to our two objectives for customer allocation. We extend our exploration of selected solutions by considering a range of trade-offs for customer allocation

    A new model for the hazardous waste location-routing problem

    Get PDF
    Cataloged from PDF version of article.Hazardous waste management involves the collection, transportation, treatment and disposal of hazardous wastes. In this paper a new multiobjective location-routing model is proposed. Our model also includes some constraints, which were observed in the literature but were not incorporated into previous models. The aim of the proposed model is to answer the following questions: where to open treatment centers and with which technologies, where to open disposal centers, how to route different types of hazardous waste to which of the compatible treatment technologies, and how to route waste residues to disposal centers. The model has the objective of minimizing the total cost and the transportation risk. A large-scale implementation of the model in the Central Anatolian region of Turkey is presented. © 2005
    • …
    corecore