57 research outputs found

    A Bayesian Approach to Computer Model Calibration and Model-Assisted Design

    Get PDF
    Computer models of phenomena that are difficult or impossible to study directly are critical for enabling research and assisting design in many areas. In order to be effective, computer models must be calibrated so that they accurately represent the modeled phenomena. There exists a rich variety of methods for computer model calibration that have been developed in recent decades. Among the desiderata of such methods is a means of quantifying remaining uncertainty after calibration regarding both the values of the calibrated model inputs and the model outputs. Bayesian approaches to calibration have met this need in recent decades. However, limitations remain. Whereas in model calibration one finds point estimates or distributions of calibration inputs in order to induce the model to reflect reality accurately, interest in a computer model often centers primarily on its use for model-assisted design, in which the goal is to find values for design inputs to induce the modeled system to approximate some target outcome. Existing Bayesian approaches are limited to the first of these two tasks. The present work develops an approach adapting Bayesian methods for model calibration for application in model-assisted design. The approach retains the benefits of Bayesian calibration in accounting for and quantifying all sources of uncertainty. It is capable of generating a comprehensive assessment of the Pareto optimal inputs for a multi-objective optimization problem. The present work shows that this approach can apply as a method for model-assisted design using a previously calibrated system, and can also serve as a method for model-assisted design using a model that still requires calibration, accomplishing both ends simultaneously

    The Kalai-Smorodinski solution for many-objective Bayesian optimization

    Get PDF
    An ongoing aim of research in multiobjective Bayesian optimization is to extend its applicability to a large number of objectives. While coping with a limited budget of evaluations, recovering the set of optimal compromise solutions generally requires numerous observations and is less interpretable since this set tends to grow larger with the number of objectives. We thus propose to focus on a specific solution originating from game theory, the Kalai-Smorodinsky solution, which possesses attractive properties. In particular, it ensures equal marginal gains over all objectives. We further make it insensitive to a monotonic transformation of the objectives by considering the objectives in the copula space. A novel tailored algorithm is proposed to search for the solution, in the form of a Bayesian optimization algorithm: sequential sampling decisions are made based on acquisition functions that derive from an instrumental Gaussian process prior. Our approach is tested on four problems with respectively four, six, eight, and nine objectives. The method is available in the Rpackage GPGame available on CRAN at https://cran.r-project.org/package=GPGame

    qPOTS: Efficient batch multiobjective Bayesian optimization via Pareto optimal Thompson sampling

    Full text link
    Classical evolutionary approaches for multiobjective optimization are quite effective but incur a lot of queries to the objectives; this can be prohibitive when objectives are expensive oracles. A sample-efficient approach to solving multiobjective optimization is via Gaussian process (GP) surrogates and Bayesian optimization (BO). Multiobjective Bayesian optimization (MOBO) involves the construction of an acquisition function which is optimized to acquire new observation candidates. This ``inner'' optimization can be hard due to various reasons: acquisition functions being nonconvex, nondifferentiable and/or unavailable in analytical form; the success of MOBO heavily relies on this inner optimization. We do away with this hard acquisition function optimization step and propose a simple, but effective, Thompson sampling based approach (qPOTSq\texttt{POTS}) where new candidate(s) are chosen from the Pareto frontier of random GP posterior sample paths obtained by solving a much cheaper multiobjective optimization problem. To further improve computational tractability in higher dimensions we propose an automated active set of candidates selection combined with a Nystr\"{o}m approximation. Our approach applies to arbitrary GP prior assumptions and demonstrates strong empirical performance over the state of the art, both in terms of accuracy and computational efficiency, on synthetic as well as real-world experiments.Comment: 12 pages, 4 figure

    A Bayesian approach to constrained single- and multi-objective optimization

    Get PDF
    This article addresses the problem of derivative-free (single- or multi-objective) optimization subject to multiple inequality constraints. Both the objective and constraint functions are assumed to be smooth, non-linear and expensive to evaluate. As a consequence, the number of evaluations that can be used to carry out the optimization is very limited, as in complex industrial design optimization problems. The method we propose to overcome this difficulty has its roots in both the Bayesian and the multi-objective optimization literatures. More specifically, an extended domination rule is used to handle objectives and constraints in a unified way, and a corresponding expected hyper-volume improvement sampling criterion is proposed. This new criterion is naturally adapted to the search of a feasible point when none is available, and reduces to existing Bayesian sampling criteria---the classical Expected Improvement (EI) criterion and some of its constrained/multi-objective extensions---as soon as at least one feasible point is available. The calculation and optimization of the criterion are performed using Sequential Monte Carlo techniques. In particular, an algorithm similar to the subset simulation method, which is well known in the field of structural reliability, is used to estimate the criterion. The method, which we call BMOO (for Bayesian Multi-Objective Optimization), is compared to state-of-the-art algorithms for single- and multi-objective constrained optimization

    Fantasizing with Dual GPs in Bayesian Optimization and Active Learning

    Full text link
    Gaussian processes (GPs) are the main surrogate functions used for sequential modelling such as Bayesian Optimization and Active Learning. Their drawbacks are poor scaling with data and the need to run an optimization loop when using a non-Gaussian likelihood. In this paper, we focus on `fantasizing' batch acquisition functions that need the ability to condition on new fantasized data computationally efficiently. By using a sparse Dual GP parameterization, we gain linear scaling with batch size as well as one-step updates for non-Gaussian likelihoods, thus extending sparse models to greedy batch fantasizing acquisition functions.Comment: In the 2022 NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making System
    • …
    corecore