5,449 research outputs found

    Multiobjective Optimization Problems with Equilibrium Constraints

    Get PDF
    The paper is devoted to new applications of advanced tools of modern variational analysis and generalized differentiation to the study of broad classes of multiobjective optimization problems subject to equilibrium constraints in both finite-dimensional and infinite-dimensional settings. Performance criteria in multiobjectivejvector optimization are defined by general preference relationships satisfying natural requirements, while equilibrium constraints are described by parameterized generalized equations/variational conditions in the sense of Robinson. Such problems are intrinsically nonsmooth and are handled in this paper via appropriate normal/coderivativejsubdifferential constructions that exhibit full calculi. Most of the results obtained are new even in finite dimensions, while the case of infinite-dimensional spaces is significantly more involved requiring in addition certain sequential normal compactness properties of sets and mappings that are preserved under a broad spectrum of operations

    Equilibrium Problems with Equilibrium Constraints via Multiobjective Optimization

    Get PDF
    The paper concerns a new class of optimization-related problems called Equilibrium Problems with Equilibrium Constraints (EPECs). One may treat them as two level hierarchical problems, which involve equilibria at both lower and upper levels. Such problems naturally appear in various applications providing an equilibrium counterpart (at the upper level) of Mathematical Programs with Equilibrium Constraints (MPECs). We develop a unified approach to both EPECs and MPECs from the viewpoint of multiobjective optimization subject to equilibrium constraints. The problems of this type are intrinsically nonsmooth and require the use of generalized differentiation for their analysis and applications. This paper presents necessary optimality conditions for EPECs in finite-dimensional spaces based an advanced generalized variational tools of variational analysis. The optimality conditions are derived in normal form under certain qualification requirements, which can be regarded as proper analogs of the classical Mangasarian-Fromovitz constraint qualification in the general settings under consideration

    Exact Penalization and Necessary Optimality Conditions for Multiobjective Optimization Problems with Equilibrium Constraints

    Get PDF
    A calmness condition for a general multiobjective optimization problem with equilibrium constraints is proposed. Some exact penalization properties for two classes of multiobjective penalty problems are established and shown to be equivalent to the calmness condition. Subsequently, a Mordukhovich stationary necessary optimality condition based on the exact penalization results is obtained. Moreover, some applications to a multiobjective optimization problem with complementarity constraints and a multiobjective optimization problem with weak vector variational inequality constraints are given

    Optimization and Equilibrium Problems with Equilibrium Constraints in Infinite-Dimensional Spaces

    Get PDF
    The paper is devoted to applications of modern variational f).nalysis to the study of constrained optimization and equilibrium problems in infinite-dimensional spaces. We pay a particular attention to the remarkable classes of optimization and equilibrium problems identified as MPECs (mathematical programs with equilibrium constraints) and EPECs (equilibrium problems with equilibrium constraints) treated from the viewpoint of multiobjective optimization. Their underlying feature is that the major constraints are governed by parametric generalized equations/variational conditions in the sense of Robinson. Such problems are intrinsically nonsmooth and can be handled by using an appropriate machinery of generalized differentiation exhibiting a rich/full calculus. The case of infinite-dimensional spaces is significantly more involved in comparison with finite dimensions, requiring in addition a certain sufficient amount of compactness and an efficient calculus of the corresponding sequential normal compactness (SNC) properties

    Optimization and Equilibrium Problems with Equilibrium Constraints

    Get PDF
    The paper concerns optimization and equilibrium problems with the so-called equilibrium constraints (MPEC and EPEC), which frequently appear in applications to operations research. These classes of problems can be naturally unified in the framework of multiobjective optimization with constraints governed by parametric variational systems (generalized equations, variational inequalities, complementarity problems, etc.). We focus on necessary conditions for optimal solutions to MPECs and EPECs under general assumptions in finite-dimensional spaces. Since such problems are intrinsically nonsmooth, we use advanced tools of generalized differentiation to study optimal solutions by methods of modern variational analysis. The general results obtained are concretized for special classes of MPECs and EPECs important in applications

    Necessary Conditions in Multiobjective Optimization With Equilibrium Constraints

    Get PDF
    In this paper we study multiobjective optimization problems with equilibrium constraints (MOECs) described by generalized equations in the form 0 is an element of the set G(x,y) + Q(x,y), where both mappings G and Q are set-valued. Such models particularly arise from certain optimization-related problems governed by variational inequalities and first-order optimality conditions in nondifferentiable programming. We establish verifiable necessary conditions for the general problems under consideration and for their important specifications using modern tools of variational analysis and generalized differentiation. The application of the obtained necessary optimality conditions is illustrated by a numerical example from bilevel programming with convex while nondifferentiable data
    corecore