1,337 research outputs found

    Multiobjective evolutionary algorithm based on vector angle neighborhood

    Get PDF
    Selection is a major driving force behind evolution and is a key feature of multiobjective evolutionary algorithms. Selection aims at promoting the survival and reproduction of individuals that are most fitted to a given environment. In the presence of multiple objectives, major challenges faced by this operator come from the need to address both the population convergence and diversity, which are conflicting to a certain extent. This paper proposes a new selection scheme for evolutionary multiobjective optimization. Its distinctive feature is a similarity measure for estimating the population diversity, which is based on the angle between the objective vectors. The smaller the angle, the more similar individuals. The concept of similarity is exploited during the mating by defining the neighborhood and the replacement by determining the most crowded region where the worst individual is identified. The latter is performed on the basis of a convergence measure that plays a major role in guiding the population towards the Pareto optimal front. The proposed algorithm is intended to exploit strengths of decomposition-based approaches in promoting diversity among the population while reducing the user's burden of specifying weight vectors before the search. The proposed approach is validated by computational experiments with state-of-the-art algorithms on problems with different characteristics. The obtained results indicate a highly competitive performance of the proposed approach. Significant advantages are revealed when dealing with problems posing substantial difficulties in keeping diversity, including many-objective problems. The relevance of the suggested similarity and convergence measures are shown. The validity of the approach is also demonstrated on engineering problems.This work was supported by the Portuguese Fundacao para a Ciencia e Tecnologia under grant PEst-C/CTM/LA0025/2013 (Projecto Estrategico - LA 25 - 2013-2014 - Strategic Project - LA 25 - 2013-2014).info:eu-repo/semantics/publishedVersio

    Multi-agent collaborative search : an agent-based memetic multi-objective optimization algorithm applied to space trajectory design

    Get PDF
    This article presents an algorithm for multi-objective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighbourhood of each agent. These heuristics are complemented with a combination of a local and global archive. The novel agent-based algorithm is tested at first on a set of standard problems and then on three specific problems in space trajectory design. Its performance is compared against a number of state-of-the-art multi-objective optimization algorithms that use the Pareto dominance as selection criterion: non-dominated sorting genetic algorithm (NSGA-II), Pareto archived evolution strategy (PAES), multiple objective particle swarm optimization (MOPSO), and multiple trajectory search (MTS). The results demonstrate that the agent-based search can identify parts of the Pareto set that the other algorithms were not able to capture. Furthermore, convergence is statistically better although the variance of the results is in some cases higher

    A novel multi-objective evolutionary algorithm based on space partitioning

    Get PDF
    To design an e ective multi-objective optimization evolutionary algorithms (MOEA), we need to address the following issues: 1) the sensitivity to the shape of true Pareto front (PF) on decomposition-based MOEAs; 2) the loss of diversity due to paying so much attention to the convergence on domination-based MOEAs; 3) the curse of dimensionality for many-objective optimization problems on grid-based MOEAs. This paper proposes an MOEA based on space partitioning (MOEA-SP) to address the above issues. In MOEA-SP, subspaces, partitioned by a k-dimensional tree (kd-tree), are sorted according to a bi-indicator criterion de ned in this paper. Subspace-oriented and Max-Min selection methods are introduced to increase selection pressure and maintain diversity, respectively. Experimental studies show that MOEA-SP outperforms several compared algorithms on a set of benchmarks

    Computing the set of Epsilon-efficient solutions in multiobjective space mission design

    Get PDF
    In this work, we consider multiobjective space mission design problems. We will start from the need, from a practical point of view, to consider in addition to the (Pareto) optimal solutions also nearly optimal ones. In fact, extending the set of solutions for a given mission to those nearly optimal significantly increases the number of options for the decision maker and gives a measure of the size of the launch windows corresponding to each optimal solution, i.e., a measure of its robustness. Whereas the possible loss of such approximate solutions compared to optimal—and possibly even ‘better’—ones is dispensable. For this, we will examine several typical problems in space trajectory design—a biimpulsive transfer from the Earth to the asteroid Apophis and two low-thrust multigravity assist transfers—and demonstrate the possible benefit of the novel approach. Further, we will present a multiobjective evolutionary algorithm which is designed for this purpose

    An adaptation reference-point-based multiobjective evolutionary algorithm

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.It is well known that maintaining a good balance between convergence and diversity is crucial to the performance of multiobjective optimization algorithms (MOEAs). However, the Pareto front (PF) of multiobjective optimization problems (MOPs) affects the performance of MOEAs, especially reference point-based ones. This paper proposes a reference-point-based adaptive method to study the PF of MOPs according to the candidate solutions of the population. In addition, the proportion and angle function presented selects elites during environmental selection. Compared with five state-of-the-art MOEAs, the proposed algorithm shows highly competitive effectiveness on MOPs with six complex characteristics
    corecore