88 research outputs found

    Impact analysis of crossovers in a multi-objective evolutionary algorithm

    Get PDF
    Multi-objective optimization has become mainstream because several real-world problems are naturally posed as a Multi-objective optimization problems (MOPs) in all fields of engineering and science. Usually MOPs consist of more than two conflicting objective functions and that demand trade-off solutions. Multi-objective evolutionary algorithms (MOEAs) are extremely useful and well-suited for solving MOPs due to population based nature. MOEAs evolve its population of solutions in a natural way and searched for compromise solutions in single simulation run unlike traditional methods. These algorithms make use of various intrinsic search operators in efficient manners. In this paper, we experimentally study the impact of different multiple crossovers in multi-objective evolutionary algorithm based on decomposition (MOEA/D) framework and evaluate its performance over test instances of 2009 IEEE congress on evolutionary computation (CEC?09) developed for MOEAs competition. Based on our carried out experiment, we observe that used variation operators are considered to main source to improve the algorithmic performance of MOEA/D for dealing with CEC?09 complicated test problems

    Enhanced Version of Multi-algorithm Genetically Adaptive for Multiobjective optimization

    Get PDF
    Abstract: Multi-objective EAs (MOEAs) are well established population-based techniques for solving various search and optimization problems. MOEAs employ different evolutionary operators to evolve populations of solutions for approximating the set of optimal solutions of the problem at hand in a single simulation run. Different evolutionary operators suite different problems. The use of multiple operators with a self-adaptive capability can further improve the performance of existing MOEAs. This paper suggests an enhanced version of a genetically adaptive multi-algorithm for multi-objective (AMAL-GAM) optimisation which includes differential evolution (DE), particle swarm optimization (PSO), simulated binary crossover (SBX), Pareto archive evolution strategy (PAES) and simplex crossover (SPX) for population evolution during the course of optimization. We examine the performance of this enhanced version of AMALGAM experimentally over two different test suites, the ZDT test problems and the test instances designed recently for the special session on MOEA?s competition at the Congress of Evolutionary Computing of 2009 (CEC?09). The suggested algorithm has found better approximate solutions on most test problems in terms of inverted generational distance (IGD) as the metric indicator. - See more at: http://thesai.org/Publications/ViewPaper?Volume=6&Issue=12&Code=ijacsa&SerialNo=37#sthash.lxkuyzEf.dpu

    Hybrid adaptive evolutionary algorithm based on decomposition

    Get PDF
    The performance of search operators varies across the different stages of the search/optimization process of evolutionary algorithms (EAs). In general, a single search operator may not do well in all these stages when dealing with different optimization and search problems. To mitigate this, adaptive search operator schemes have been introduced. The idea is that when a search operator hits a difficult patch (under-performs) in the search space, the EA scheme “reacts” to that by potentially calling upon a different search operator. Hence, several multiple-search operator schemes have been proposed and employed within EA. In this paper, a hybrid adaptive evolutionary algorithm based on decomposition (HAEA/D) that employs four different crossover operators is suggested. Its performance has been evaluated on the well-known IEEE CEC’09 test instances. HAEA/D has generated promising results which compare well against several well-known algorithms including MOEA/D, on a number of metrics such as the inverted generational distance (IGD), the hyper-volume, the Gamma and Delta functions. These results are included and discussed in this paper

    Hybrid non-dominated sorting genetic algorithm with adaptive operators selection

    Get PDF
    Multiobjective optimization entails minimizing or maximizing multiple objective functions subject to a set of constraints. Many real world applications can be formulated as multi-objective optimization problems (MOPs), which often involve multiple conflicting objectives to be optimized simultaneously. Recently, a number of multi-objective evolutionary algorithms (MOEAs) were developed suggested for these MOPs as they do not require problem specific information. They find a set of non-dominated solutions in a single run. The evolutionary process on which they are based, typically relies on a single genetic operator. Here, we suggest an algorithm which uses a basket of search operators. This is because it is never easy to choose the most suitable operator for a given problem. The novel hybrid non-dominated sorting genetic algorithm (HNSGA) introduced here in this paper and tested on the ZDT (Zitzler-Deb-Thiele) and CEC’09 (2009 IEEE Conference on Evolutionary Computations) benchmark problems specifically formulated for MOEAs. Numerical results prove that the proposed algorithm is competitive with state-of-the-art MOEAs

    An Effective Ensemble Framework for Multi-Objective Optimization

    Get PDF
    This work was supported by the National Natural Science Foundation of China under Grants 61876110, 61876163, and 61836005, a grant from ANR/RGC Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region, China and France National Research Agency (Project No. A-CityU101/16), the Joint Funds of the National Natural Science Foundation of China under Key Program Grant U1713212, and CONACyT grant no. 221551.Peer reviewedPostprin

    Multiobjective direct policy search using physically based operating rules in multireservoir systems

    Get PDF
    supplemental_data_wr.1943-5452.0001159_ritter.pdf (492 KB)This study explores the ways to introduce physical interpretability into the process of optimizing operating rules for multireservoir systems with multiple objectives. Prior studies applied the concept of direct policy search (DPS), in which the release policy is expressed as a set of parameterized functions (e.g., neural networks) that are optimized by simulating the performance of different parameter value combinations over a testing period. The problem with this approach is that the operators generally avoid adopting such artificial black-box functions for the direct real-time control of their systems, preferring simpler tools with a clear connection to the system physics. This study addresses this mismatch by replacing the black-box functions in DPS with physically based parameterized operating rules, for example by directly using target levels in dams as decision variables. This leads to results that are physically interpretable and may be more acceptable to operators. The methodology proposed in this work is applied to a network of five reservoirs and four power plants in the Nechi catchment in Colombia, with four interests involved: average energy generation, firm energy generation, flood hazard, and flow regime alteration. The release policy is expressed depending on only 12 parameters, which significantly reduces the computational complexity compared to existing approaches of multiobjective DPS. The resulting four-dimensional Pareto-approximate set offers a variety of operational strategies from which operators may choose one that corresponds best to their preferences. For demonstration purposes, one particular optimized policy is selected and its parameter values are analyzed to illustrate how the physically based operating rules can be directly interpreted by the operators.Peer ReviewedPreprin

    Assessment of water resources management strategy under different evolutionary optimization techniques

    Get PDF
    Competitive optimization techniques have been developed to address the complexity of integrated water resources management (IWRM) modelling; however, model adaptation due to changing environments is still a challenge. In this paper we employ multi-variable techniques to increase confidence in model-driven decision-making scenarios. Here, water reservoir management was assessed using two evolutionary algorithm (EA) techniques, the epsilon-dominance-driven self-adaptive evolutionary algorithm (∈-DSEA) and the Borg multi-objective evolutionary algorithm (MOEA). Many objective scenarios were evaluated to manage flood risk, hydropower generation, water supply, and release sequences over three decades. Computationally, the ∈-DSEA's results are generally reliable, robust, effective and efficient when compared directly with the Borg MOEA but both provide decision support model outputs of value

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    A hybrid, auto-adaptive, and rule-based multi-agent approach using evolutionary algorithms for improved searching

    Full text link
    Selecting the most appropriate heuristic for solving a specific problem is not easy, for many reasons. This article focuses on one of these reasons: traditionally, the solution search process has operated in a given manner regardless of the specific problem being solved, and the process has been the same regardless of the size, complexity and domain of the problem. To cope with this situation, search processes should mould the search into areas of the search space that are meaningful for the problem. This article builds on previous work in the development of a multi-agent paradigm using techniques derived from knowledge discovery (data-mining techniques) on databases of so-far visited solutions. The aim is to improve the search mechanisms, increase computational efficiency and use rules to enrich the formulation of optimization problems, while reducing the search space and catering to realistic problems.Izquierdo SebastiĂĄn, J.; Montalvo Arango, I.; Campbell, E.; PĂ©rez GarcĂ­a, R. (2015). A hybrid, auto-adaptive, and rule-based multi-agent approach using evolutionary algorithms for improved searching. Engineering Optimization. 1-13. doi:10.1080/0305215X.2015.1107434S113Becker, U., & Fahrmeir, L. (2001). Bump Hunting for Risk: a New Data Mining Tool and its Applications. Computational Statistics, 16(3), 373-386. doi:10.1007/s001800100073Bouguessa, M., & Shengrui Wang. (2009). Mining Projected Clusters in High-Dimensional Spaces. IEEE Transactions on Knowledge and Data Engineering, 21(4), 507-522. doi:10.1109/tkde.2008.162Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1-2), 103-112. doi:10.1016/j.chemolab.2004.12.011CHONG, I., & JUN, C. (2008). Flexible patient rule induction method for optimizing process variables in discrete type. Expert Systems with Applications, 34(4), 3014-3020. doi:10.1016/j.eswa.2007.05.047Cole, S. W., Galic, Z., & Zack, J. A. (2003). Controlling false-negative errors in microarray differential expression analysis: a PRIM approach. Bioinformatics, 19(14), 1808-1816. doi:10.1093/bioinformatics/btg242FRIEDMAN, J. H., & FISHER, N. I. (1999). Statistics and Computing, 9(2), 123-143. doi:10.1023/a:1008894516817Geem, Z. W. (2006). Optimal cost design of water distribution networks using harmony search. Engineering Optimization, 38(3), 259-277. doi:10.1080/03052150500467430Goncalves, L. B., Vellasco, M. M. B. R., Pacheco, M. A. C., & Flavio Joaquim de Souza. (2006). Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 36(2), 236-248. doi:10.1109/tsmcc.2004.843220Hastie, T., Friedman, J., & Tibshirani, R. (2001). The Elements of Statistical Learning. Springer Series in Statistics. doi:10.1007/978-0-387-21606-5Chih-Ming Hsu, & Ming-Syan Chen. (2009). On the Design and Applicability of Distance Functions in High-Dimensional Data Space. IEEE Transactions on Knowledge and Data Engineering, 21(4), 523-536. doi:10.1109/tkde.2008.178Hwang, S.-F., & He, R.-S. (2006). A hybrid real-parameter genetic algorithm for function optimization. Advanced Engineering Informatics, 20(1), 7-21. doi:10.1016/j.aei.2005.09.001Izquierdo, J., Montalvo, I., PĂ©rez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Javadi, A. A., Farmani, R., & Tan, T. P. (2005). A hybrid intelligent genetic algorithm. Advanced Engineering Informatics, 19(4), 255-262. doi:10.1016/j.aei.2005.07.003Jin, X., Zhang, J., Gao, J., & Wu, W. (2008). Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II. Journal of Zhejiang University-SCIENCE A, 9(3), 391-400. doi:10.1631/jzus.a071448Johns, M. B., Keedwell, E., & Savic, D. (2014). Adaptive locally constrained genetic algorithm for least-cost water distribution network design. Journal of Hydroinformatics, 16(2), 288-301. doi:10.2166/hydro.2013.218Jourdan, L., Corne, D., Savic, D., & Walters, G. (2005). Preliminary Investigation of the ‘Learnable Evolution Model’ for Faster/Better Multiobjective Water Systems Design. Evolutionary Multi-Criterion Optimization, 841-855. doi:10.1007/978-3-540-31880-4_58Kamwa, I., Samantaray, S. R., & Joos, G. (2009). Development of Rule-Based Classifiers for Rapid Stability Assessment of Wide-Area Post-Disturbance Records. IEEE Transactions on Power Systems, 24(1), 258-270. doi:10.1109/tpwrs.2008.2009430Kang, D., & Lansey, K. (2012). Revisiting Optimal Water-Distribution System Design: Issues and a Heuristic Hierarchical Approach. Journal of Water Resources Planning and Management, 138(3), 208-217. doi:10.1061/(asce)wr.1943-5452.0000165Keedwell, E., & Khu, S.-T. (2005). A hybrid genetic algorithm for the design of water distribution networks. Engineering Applications of Artificial Intelligence, 18(4), 461-472. doi:10.1016/j.engappai.2004.10.001Kehl, V., & Ulm, K. (2006). Responder identification in clinical trials with censored data. Computational Statistics & Data Analysis, 50(5), 1338-1355. doi:10.1016/j.csda.2004.11.015Liu, X., Minin, V., Huang, Y., Seligson, D. B., & Horvath, S. (2004). Statistical Methods for Analyzing Tissue Microarray Data. Journal of Biopharmaceutical Statistics, 14(3), 671-685. doi:10.1081/bip-200025657Marchi, A., Dandy, G., Wilkins, A., & Rohrlach, H. (2014). Methodology for Comparing Evolutionary Algorithms for Optimization of Water Distribution Systems. Journal of Water Resources Planning and Management, 140(1), 22-31. doi:10.1061/(asce)wr.1943-5452.0000321MartĂ­nez-RodrĂ­guez, J. B., Montalvo, I., Izquierdo, J., & PĂ©rez-GarcĂ­a, R. (2011). Reliability and Tolerance Comparison in Water Supply Networks. Water Resources Management, 25(5), 1437-1448. doi:10.1007/s11269-010-9753-2McClymont, K., Keedwell, E., Savić, D., & Randall-Smith, M. (2013). A general multi-objective hyper-heuristic for water distribution network design with discolouration risk. Journal of Hydroinformatics, 15(3), 700-716. doi:10.2166/hydro.2012.022McClymont, K., Keedwell, E. C., Savić, D., & Randall-Smith, M. (2014). Automated construction of evolutionary algorithm operators for the bi-objective water distribution network design problem using a genetic programming based hyper-heuristic approach. Journal of Hydroinformatics, 16(2), 302-318. doi:10.2166/hydro.2013.226Michalski, R. S. (2000). Machine Learning, 38(1/2), 9-40. doi:10.1023/a:1007677805582Montalvo, I., Izquierdo, J., PĂ©rez-GarcĂ­a, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062Montalvo, I., Izquierdo, J., Schwarze, S., & PĂ©rez-GarcĂ­a, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Nguyen, V. V., Hartmann, D., & König, M. (2012). A distributed agent-based approach for simulation-based optimization. Advanced Engineering Informatics, 26(4), 814-832. doi:10.1016/j.aei.2012.06.001Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., 
 Chan-Hilton, A. (2010). State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management. Journal of Water Resources Planning and Management, 136(4), 412-432. doi:10.1061/(asce)wr.1943-5452.0000053Onwubolu, G. C., & Babu, B. V. (2004). New Optimization Techniques in Engineering. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39930-8Pelikan, M., Goldberg, D. E., & Lobo, F. G. (2002). Computational Optimization and Applications, 21(1), 5-20. doi:10.1023/a:1013500812258Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R., & Kollat, J. B. (2013). Evolutionary multiobjective optimization in water resources: The past, present, and future. Advances in Water Resources, 51, 438-456. doi:10.1016/j.advwatres.2012.01.005Shang, W., Zhao, S., & Shen, Y. (2009). A flexible tolerance genetic algorithm for optimal problems with nonlinear equality constraints. Advanced Engineering Informatics, 23(3), 253-264. doi:10.1016/j.aei.2008.09.001Vrugt, J. A., & Robinson, B. A. (2007). Improved evolutionary optimization from genetically adaptive multimethod search. Proceedings of the National Academy of Sciences, 104(3), 708-711. doi:10.1073/pnas.0610471104Vrugt, J. A., Robinson, B. A., & Hyman, J. M. (2009). Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces. IEEE Transactions on Evolutionary Computation, 13(2), 243-259. doi:10.1109/tevc.2008.924428Xie, X.-F., & Liu, J. (2008). Graph coloring by multiagent fusion search. Journal of Combinatorial Optimization, 18(2), 99-123. doi:10.1007/s10878-008-9140-6Xiao-Feng Xie, & Jiming Liu. (2009). Multiagent Optimization System for Solving the Traveling Salesman Problem (TSP). IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 489-502. doi:10.1109/tsmcb.2008.2006910Zheng, F., Simpson, A. R., & Zecchin, A. C. (2013). A decomposition and multistage optimization approach applied to the optimization of water distribution systems with multiple supply sources. Water Resources Research, 49(1), 380-399. doi:10.1029/2012wr013160Zheng, F., Simpson, A. R., & Zecchin, A. C. (2014). Coupled Binary Linear Programming–Differential Evolution Algorithm Approach for Water Distribution System Optimization. Journal of Water Resources Planning and Management, 140(5), 585-597. doi:10.1061/(asce)wr.1943-5452.000036
    • 

    corecore