1,520 research outputs found

    An Interactive Fuzzy Satisficing Method for Fuzzy Random Multiobjective 0-1 Programming Problems through Probability Maximization Using Possibility

    Get PDF
    In this paper, we focus on multiobjective 0-1 programming problems under the situation where stochastic uncertainty and vagueness exist at the same time. We formulate them as fuzzy random multiobjective 0-1 programming problems where coefficients of objective functions are fuzzy random variables. For the formulated problem, we propose an interactive fuzzy satisficing method through probability maximization using of possibility

    Experts’ consensus to identify elements of career management competencies in Work-Based Learning (WBL) program using Fuzzy Delphi Analysis

    Get PDF
    This study aimed to obtain experts‘ opinion and consensus on the elements of career management competencies that can be developed through the Work-Based Learning (WBL) program in polytechnic

    Fuzzy Random Noncooperative Two-level Linear Programming through Absolute Deviation Minimization Using Possibility and Necessity

    Get PDF
    This paper considers fuzzy random two-level linear programming problems under noncooperative behaviorof the decision makers. Having introduced fuzzy goals of decision makers together with the possibiliy and necessity measure, following absolute deviation minimization, fuzzy random two-level programin problems are transformed into deterministic ones. Extended Stackelberg solutions are introduced andcomputational methods are also presented

    Interactive Fuzzy Programming for Stochastic Two-level Linear Programming Problems through Probability Maximization

    Get PDF
    This paper considers stochastic two-level linear programming problems. Using the concept of chance constraints and probability maximization, original problems are transformed into deterministic ones. An interactive fuzzy programming method is presented for deriving a satisfactory solution efficiently with considerations of overall satisfactory balance

    Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables

    Get PDF
    This paper considers linear programming problems (LPPs) where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables). New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments

    Interactive Fuzzy Random Two-level Linear Programming through Fractile Criterion Optimization

    Get PDF
    This paper considers two-level linear programming problems involving fuzzy random variables. Having introduced level sets of fuzzy random variables and fuzzy goals of decision makers, following fractile criterion optimization, fuzzy random two-level programming problems are transformed into deterministic ones. Interactive fuzzy programming is presented for deriving a satisfactory solution efficiently with considerations of overall satisfactory balance

    A two-phase procedure for a multi-objective programming problem with fuzzy coefficients based on group decision making for project selection

    Get PDF
    Regional Development Agencies (RDAs) play a major role in ensuring sustainability and reducing inter-regional and intra-regional development disparities in line with the principles and policies set in the National Development Plan and Programs. This is done by enhancing cooperation among the public and private sectors, as well as non-governmental organizations. To achieve these targets, RDAs use certain tools such as financial support programs, technical support programs, and the like. Accordingly, an effective evaluation mechanism is crucial in selecting projects that have more added value and higher multiplier effects. In this regard, determining the right parameters that assist in choosing the best projects should be clearly demonstrated. In this study, the selection of projects according to the evaluating criteria of support mechanisms considered by RDAs are discussed through the procedure provided by a practical solution methodology, which is an integration of fuzzy parametric programming (FPP) and fuzzy linear programming (FLP). Later, a two-phase procedure is introduced to solve multi-objective fuzzy linear programming problems

    Improved two-phase solution strategy for multiobjective fuzzy stochastic linear programming problems with uncertain probability distribution

    Get PDF
    Multiobjective Fuzzy Stochastic Linear Programming (MFSLP) problem where the linear inequalities on the probability are fuzzy is called a Multiobjective Fuzzy Stochastic Linear Programming problem with Fuzzy Linear Partial Information on Probability Distribution (MFSLPPFI). The uncertainty presents unique difficulties in constrained optimization problems owing to the presence of conflicting goals and randomness surrounding the data. Most existing solution techniques for MFSLPPFI problems rely heavily on the expectation optimization model, the variance minimization model, the probability maximization model, pessimistic/optimistic values and compromise solution under partial uncertainty of random parameters. Although these approaches recognize the fact that the interval values for probability distribution have important significance, nevertheless they are restricted by the upper and lower limitations of probability distribution and neglected the interior values. This limitation motivated us to search for more efficient strategies for MFSLPPFI which address both the fuzziness of the probability distributions, and the fuzziness and randomness of the parameters. The proposed strategy consists two phases: fuzzy transformation and stochastic transformation. First, ranking function is used to transform the MFSLPPFI to Multiobjective Stochastic Linear Programming Problem with Fuzzy Linear Partial Information on Probability Distribution (MSLPPFI). The problem is then transformed to its corresponding Multiobjective Linear Programming (MLP) problem by using a-cut technique of uncertain probability distribution and linguistic hedges. In addition, Chance Constraint Programming (CCP), and expectation of random coefficients are applied to the constraints and the objectives respectively. Finally, the MLP problem is converted to a single-objective Linear Programming (LP) problem via an Adaptive Arithmetic Average Method (AAAM), and then solved by using simplex method. The algorithm used to obtain the solution requires fewer iterations and faster generation of results compared to existing solutions. Three realistic examples are tested which show that the approach used in this study is efficient in solving the MFSLPPFI
    corecore