10 research outputs found

    Multiobjective Sparse Ensemble Learning by Means of Evolutionary Algorithms

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Ensemble learning can improve the performance of individual classifiers by combining their decisions. The sparseness of ensemble learning has attracted much attention in recent years. In this paper, a novel multiobjective sparse ensemble learning (MOSEL) model is proposed. Firstly, to describe the ensemble classifiers more precisely the detection error trade-off (DET) curve is taken into consideration. The sparsity ratio (sr) is treated as the third objective to be minimized, in addition to false positive rate (fpr) and false negative rate (fnr) minimization. The MOSEL turns out to be augmented DET (ADET) convex hull maximization problem. Secondly, several evolutionary multiobjective algorithms are exploited to find sparse ensemble classifiers with strong performance. The relationship between the sparsity and the performance of ensemble classifiers on the ADET space is explained. Thirdly, an adaptive MOSEL classifiers selection method is designed to select the most suitable ensemble classifiers for a given dataset. The proposed MOSEL method is applied to well-known MNIST datasets and a real-world remote sensing image change detection problem, and several datasets are used to test the performance of the method on this problem. Experimental results based on both MNIST datasets and remote sensing image change detection show that MOSEL performs significantly better than conventional ensemble learning methods

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Hyperspectral Image Classification With Independent Component Discriminant Analysis

    Full text link

    Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package

    Full text link
    Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in Image processing and machine learning substantially affected unmixing. This paper provides an overview of advanced and conventional unmixing approaches. Additionally, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and two real datasets. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results

    Hyperspectral Image Unmixing Incorporating Adjacency Information

    Get PDF
    While the spectral information contained in hyperspectral images is rich, the spatial resolution of such images is in many cases very low. Many pixel spectra are mixtures of pure materials’ spectra and therefore need to be decomposed into their constituents. This work investigates new decomposition methods taking into account spectral, spatial and global 3D adjacency information. This allows for faster and more accurate decomposition results

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Sustainable Smart Cities and Smart Villages Research

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [There is ever more research on smart cities and new interdisciplinary approaches proposed on the study of smart cities. At the same time, problems pertinent to communities inhabiting rural areas are being addressed, as part of discussions in contigious fields of research, be it environmental studies, sociology, or agriculture. Even if rural areas and countryside communities have previously been a subject of concern for robust policy frameworks, such as the European Union’s Cohesion Policy and Common Agricultural Policy Arguably, the concept of ‘the village’ has been largely absent in the debate. As a result, when advances in sophisticated information and communication technology (ICT) led to the emergence of a rich body of research on smart cities, the application and usability of ICT in the context of a village has remained underdiscussed in the literature. Against this backdrop, this volume delivers on four objectives. It delineates the conceptual boundaries of the concept of ‘smart village’. It highlights in which ways ‘smart village’ is distinct from ‘smart city’. It examines in which ways smart cities research can enrich smart villages research. It sheds light on the smart village research agenda as it unfolds in European and global contexts.

    COMMUNITY DETECTION IN GRAPHS

    Get PDF
    Thesis (Ph.D.) - Indiana University, Luddy School of Informatics, Computing, and Engineering/University Graduate School, 2020Community detection has always been one of the fundamental research topics in graph mining. As a type of unsupervised or semi-supervised approach, community detection aims to explore node high-order closeness by leveraging graph topological structure. By grouping similar nodes or edges into the same community while separating dissimilar ones apart into different communities, graph structure can be revealed in a coarser resolution. It can be beneficial for numerous applications such as user shopping recommendation and advertisement in e-commerce, protein-protein interaction prediction in the bioinformatics, and literature recommendation or scholar collaboration in citation analysis. However, identifying communities is an ill-defined problem. Due to the No Free Lunch theorem [1], there is neither gold standard to represent perfect community partition nor universal methods that are able to detect satisfied communities for all tasks under various types of graphs. To have a global view of this research topic, I summarize state-of-art community detection methods by categorizing them based on graph types, research tasks and methodology frameworks. As academic exploration on community detection grows rapidly in recent years, I hereby particularly focus on the state-of-art works published in the latest decade, which may leave out some classic models published decades ago. Meanwhile, three subtle community detection tasks are proposed and assessed in this dissertation as well. First, apart from general models which consider only graph structures, personalized community detection considers user need as auxiliary information to guide community detection. In the end, there will be fine-grained communities for nodes better matching user needs while coarser-resolution communities for the rest of less relevant nodes. Second, graphs always suffer from the sparse connectivity issue. Leveraging conventional models directly on such graphs may hugely distort the quality of generate communities. To tackle such a problem, cross-graph techniques are involved to propagate external graph information as a support for target graph community detection. Third, graph community structure supports a natural language processing (NLP) task to depict node intrinsic characteristics by generating node summarizations via a text generative model. The contribution of this dissertation is threefold. First, a decent amount of researches are reviewed and summarized under a well-defined taxonomy. Existing works about methods, evaluation and applications are all addressed in the literature review. Second, three novel community detection tasks are demonstrated and associated models are proposed and evaluated by comparing with state-of-art baselines under various datasets. Third, the limitations of current works are pointed out and future research tracks with potentials are discussed as well

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF
    corecore